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ABSTRACT 

  

It is an often overlooked, but vital, research question to understand how what is 

fed to food-producing animals ultimately affects quality and consumer acceptability of 

food products produced by those animals.  Of interest in recent years, particularly in the 

Midwest, has been the effect of inclusion of dried distillers grains with solubles (DDGS) 

in the rations of lactating dairy cows on milk and cheese quality.  Because of the high 

unsaturated oil content of DDGS, feeding DDGS to dairy cows could potentially lead to 

decreased oxidative stability of milk and cheese and also contribute to the late blowing of 

eyes in Swiss type cheeses.  Therefore, it was of interest to investigate if feeding full-fat 

DDGS (~13 % fat) would result in increased development of off-flavors in milk and 

could result in milk that was unsuitable for use in baby Swiss cheese production.  

Additionally, the recent development of reduced-fat DDGS (RF-DDGS) (~6% fat) offers 

the possibility of feeding increased amounts of DDGS, compared to feeding full-fat 

DDGS, without adversely affecting milk and milk fat production.  Because of the 

possibility of higher rates of inclusion of RF- DDGS in the rations of dairy cows than was 

possible with full-fat DDGS, it was necessary to investigate the effects of feeding RF-

DDGS on milk production efficiency and the quality of milk for the production of baby 

Swiss cheese.  Finally, feedstuffs containing high concentrations of unsaturated fatty 

acids, in particular DDGS, can adversely affect the quality of pork fat, potentially 

resulting in pork that is unacceptable to the producer and consumer.  Specific project 

summaries are described in the subsequent pages.  
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Quality of milk from lactating dairy cattle fed dried distillers grains with solubles 

The objective of this study was to examine the effect of feeding DDGS to healthy 

mid-lactation Holstein dairy cows (n=24) on production parameters and flavor and 

oxidative stability of milk. Cows were assigned to two groups and fed one of three 

treatment diets (0% DDGS, 10% DDGS, 25% DDGS by dry matter (DM)) as an 

isocaloric total mixed ration.  Each group was fed all three diets after a wash-out period 

of 7 days.  Milk yield was unaffected by both the 0% and 10% DDGS diets but decreased 

significantly when fed the 25% DDGS diet.  The quality of milk from cows fed DDGS 

was characterized through chemical analyses profiling fatty acids and analyzing milk 

composition.  Rumen volatile fatty acids were unaffected by treatment.  Milk protein and 

solids-not-fat (SNF) increased with increasing inclusion of DDGS, but milk fat decreased 

concomitantly.  Milk fatty acid composition, on a weight percent basis, was significantly 

affected; cows fed higher concentrations of DDGS produced milk with higher 

concentrations of unsaturated fatty acids.  An assessment of milk quality by a trained 

sensory panel showed no effect of dietary treatment on milk oxidative stability or milk 

flavor.  The results of this study indicate that feeding of DDGS to lactating dairy cows, 

under controlled conditions, does not negatively affect milk oxidative stability or flavor; 

feeding 25% DDGS, however, did negatively impact milk production and changed the 

milk fatty acid profile. 
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Lactational performance of lactating Holstein dairy cows fed full-fat and reduced-

fat dried distillers grains with solubles 

Our objective was to evaluate production performance of lactating Holstein dairy 

cows fed two different dietary concentrations of full-fat DDGS (13.6% fat).  Thirty cows 

were fed 0, 10, and 20% DDGS (DM basis) as a total mixed ration (TMR) in a 3 × 3 

crossover.  Cows were stratified into groups of 10 by parity and days in milk and fed each 

of three diets in three 28-day periods.  Based on previous research, we hypothesized that 

feeding 20% DDGS (DM basis) would negatively influence production and feed 

efficiency of dairy cattle.  Milk yield was decreased significantly when fed 20% DDGS, 

and feeding DDGS caused milk fat depression and decreased daily fat yield, resulting in 

significant decreases in 3.5% fat-corrected milk (FCM) yield and energy-corrected milk 

(ECM) yield.  Both protein and lactose percentages increased significantly when cows 

were fed 20% DDGS; neither protein nor lactose yield, however, was significantly 

affected.  Protein efficiency, a measure of the utilization of dietary protein for milk 

protein synthesis, decreased significantly for cows fed 20% DDGS, likely resulting from 

heat-damaged protein, as indicated by proximate analyses.  All three measures of 

energetic efficiency (ECM/DMI, kg ECM/net energy for lactation (NEL) intake (Mcal) 

and gross energy of milk produced (Mcal)/NEL caloric intake (Mcal)) were significantly 

decreased when cows were fed 20% DDGS but not when cows were fed 10% DDGS.  

These results indicate that, with the exception of an approximate loss of milk fat of 0.5% 

percentage points, full-fat DDGS used in this study can be effectively fed at 10% without 
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a loss in production performance when compared with a traditional TMR.  Feeding the 

full-fat DDGS at 20%, however, is not advisable. 

In contrast with results from feeding FF-DDGS, negative effects of feeding RF-

DDGS to lactating dairy cows did not occur when 36 multiparous and mid lactation 

Holstein dairy cows were fed either 0 or 20% reduced-fat DDGS (RF-DDGS) in a 2 × 2 

crossover design.  Cows were assigned randomly to treatment groups and were fed 

individually to allow for collection of feed intake data.  Feeding RF-DDGS as 20% DM 

of a TMR supplemented with rumen-protected lysine did not negatively influence 

production parameters related to milk composition or nutritional physiology of the cow.  

Milk urea nitrogen (MUN) was, however, decreased, and milk protein percentage was 

increased.  Total milk solids concentration were not influenced by inclusion of RF-

DDGS.  Additionally, RF-DDGS did cause a decrease in FCM efficiency as a result of an 

increase in DMI.  When ECM efficiency was calculated (accounting for fat, protein, and 

lactose concentration in milk), no difference in feed efficiency resulted. 

These data indicate that RF-DDGS can be included effectively in rations of 

multiparous lactating dairy cows, at least when supplemented with lysine.  Additionally, 

decreased MUN and increased milk protein percentage indicate that dietary protein 

utilization may be improved by including RF-DDGS as a protein source in the ration, 

presumably because DDGS are generally considered to be a good source of rumen 

undegradable protein.  Taken together, these results indicate that RF-DDGS may be an 

attractive feed ingredient for 20% inclusion in lactating ruminant diet.  
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Reduced-fat dried distillers grains with solubles did not reduce quality of baby 

Swiss cheese 

 Thirty-six multiparous and mid lactation Holstein dairy cows were fed either 0 or 

20% reduced-fat DDGS (RF-DDGS) in a 2 × 2 crossover design.  Cheeses were produced 

a total of six times from each treatment.  In this experiment, feeding RF-DDGS as 20% 

DM of a total mixed ration (TMR) supplemented with lysine did not negatively influence 

flavor attributes of baby Swiss cheese.  Eye appearance in all cheeses was atypical but 

was not related to diet.  Any defects in appearance of Baby Swiss cheese appeared in 

both control and RF-DDGS fed cows. The results indicate that lactating Holstein dairy 

cows can be fed RF-DDGS as 20% DM of a TMR without negatively affecting usability 

of milk, when compared with control, for production of Baby Swiss cheese. 

Relationship of fat quality and meat quality traits of fresh pork 

Feeding distillers grains to pigs can lead to undesirable traits in meat quality that 

adversely affect both consumer acceptability and the ability of the processor to produce 

high quality pork products.  Additionally, interest has been expressed by both processors 

and the research community about how fat quality varies among anatomical locations.   

Barrows and gilts (n=347) of five purebred lines and one commercial crossbred 

line were fed commercial swine diets with FF-DDGS inclusion at 30% of DM.  For the 

final 30 days of feeding, DDGS were removed from the diet.  Pigs were harvested at a 

minimal weight of 111.4 kg.  At harvest, fat was collected from the back, belly, and jowl, 

and meat samples were taken from the longissimus muscle for evaluation of fat and meat 

quality characteristics.  Jowl fat iodine values were significant predictors of back and 

belly fat iodine values, and increases in iodine value of the fat of the pork chop were 
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moderately and negatively correlated with several measures of meat quality.  This study 

demonstrates that iodine value of fat from one anatomical location (i.e., back and belly) is 

related to iodine value of a less valuable anatomical location (i.e., jowl); additionally, 

increases in iodine value correlate negatively with predictors of meat quality.     
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CHAPTER 1 

INTRODUCTION 

Overall summary and justification of research 

 Feeds containing high concentrations of unsaturated fatty acids (i.e., corn oil in 

distillers grains) negatively influences production parameters of lactating dairy cattle 

through inhibition of ruminal fiber digestion (Brown et al., 1962; Beitz and Davis, 1964; 

Ensor et al., 1959; Garner and Sanders, 1938; Maynard et al., 1936; Moore et al., 1945; 

Ramirez Ramirez et al., 2015; Zinn et al., 1989) and inhibition of de novo lipogenesis in 

the mammary gland, particularly through the action of trans-10 cis-12 conjugated linoleic 

acid (Baumgard et al., 2001).  Additionally, diets with a concentration of fat over 5% can 

negatively influence milk production, regardless of degree of unsaturation (Zinn et al., 

1989).  We, therefore, hypothesized that feeding two different concentrations (10 and 

20% inclusion DM basis) of full fat dried distillers grains with solubles (FF-DDGS) 

(~13% fat) would negatively influence production parameters and feed efficiency of 

lactating Holstein dairy cattle, but that feeding 20% DM reduced-fat DDGS (RF-DDGS) 

(~6% fat) would not.     

 Furthermore, incomplete biohydrogenation of unsaturated fatty acids in the rumen 

results in increased dietary unsaturated fatty acids being incorporated into milk (Kelly et 

al., 1998).  Unsaturated fatty acids are particularly susceptible to oxidation, especially in 

the presence of riboflavin and light-induced lipid oxidation that can lead to the 

development of off-flavors (Minn & Boff, 2002).  Light and riboflavin are both factors 

for milk in lighted dairy cases at grocery stores.  Therefore, when concerns in the 

Midwest were raised over milk “going bad spontaneously”, we hypothesized that the 
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increased unsaturated fatty acids in milk produced from dairy cattle fed high oil 

feedstuffs, such as FF-DDGS (~10-13% fat), could decrease oxidative stability and thus 

decrease shelf life and consumer acceptability of this milk.   

 In addition, distillers grains have been implicated in contaminating milk with 

Clostridium tyrobutyricum (Houck et al., 2007), which are spore-forming thermoduric 

bacteria that have been associated with “late blowing” in Swiss type cheeses resulting in 

the formation of imperfect eyes, decreases in consumer acceptability, and decreased 

value of product for the producer.  C. tyrobutyricum was found not to be a cause of late 

blowing in baby Swiss cheese (Sankarlal et al., 2015).   

 Moreover, anecdotal evidence was being circulated amongst the dairy community 

that feeding distillers grains to cows was producing milk that was of unacceptable quality 

for production of Swiss cheese (personal conversation with Swiss Valley personnel).  

With distillers grains being a major co-product and potentially valuable feedstuff in the 

Midwest and because evidence of the relationship between feeding DDGS and usability 

of milk has been anecdotal to date, scientific investigation into the relationship of feeding 

distillers grains and milk on usability for Swiss cheese production is warranted.  Because 

C. tyrobutyricum was not found in the distillers grains we fed and because other causative 

relationships between the feeding of DDGS and poor quality Swiss cheese seemed 

unlikely (e.g., increased lactose production), we hypothesized that feeding FF-DDGS 

(Sankarlal et al., 2015) and RF-DDGS (~4-6% fat) would not negatively influence quality 

of baby Swiss cheese and, eye formation particularly.   

 Finally, feeding diets rich in unsaturated fatty acids to pigs, such as those that 

incorporate DDGS, can increase incorporation of unsaturated fatty acids into the adipose 
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tissue of pigs and thereby result in “soft bellies” (Cromwell et al., 2014), potentially 

decreasing pork quality.  If pork lipids become too highly unsaturated, like in milk, they 

can become susceptible to oxidation, particularly in the meat case, that results in 

decreased shelf life and consumer acceptability.  Unlike the case with milk fat however, 

high concentrations of unsaturated fatty acids in pork also can affect the ability of the 

processor to successfully manipulate the products being produced (e.g., bacon is less 

sliceable) (Cromwell et al., 2014).  Nevertheless, we hypothesized that: 1) fat quality, as 

represented by iodine values, varies amongst anatomical location, 2) FF-DDGS could 

effectively be fed to pigs at an inclusion rate of 30% as fed without producing pork fat 

with unacceptably high iodine values when a 30-d withdrawal period is employed pre-

harvest, and 3) “cheaper” cuts (i.e., jowl) could be used as a marker of fat quality of more 

expensive cuts (i.e., belly and loin) because a relationship between iodine values of 

different anatomical locations exists.   

Research objectives 

 The overall objective of the research contained herein was to 1) investigate the impact 

of feeding both FF-DDGS and RF-DDGS on the feed efficiency of dairy cows, 2) 

investigate the impact of feeding FF-DDGS to lactating dairy cows on the quality of milk 

as it relates to oxidative stability of milk, 3) investigate the impact of feeding RF-DDGS 

to lactating dairy cows on the quality of milk as it relates to production of baby Swiss 

cheese, and 4) investigate the impact of feeding DDGS with a 30-d withdrawal period to 

pigs on the quality of pork fat, its relationship to meat quality, and how iodine value 

varies amongst anatomical locations of adipose tissue of pigs.    
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Dissertation organization 

 Chapter two is a review of literature on the topics covered in chapters three through 

eight.  Chapters three (submitted to Professional Animal Scientist) and four (in 

preparation for submission to Journal of Dairy Science) address the effect of feeding both 

FF- and RF-DDGS on feed efficiency and production parameters of lactation Holstein 

Dairy cows.  Chapters five (published in Journal of Dairy Science) and six (submitted to 

Journal of Dairy Science) report results on the impacts of feeding FF-DDGS to lactating 

Holstein dairy cows on oxidative stability of milk and RF-DDGS on the usability of milk 

for production of baby Swiss cheese.  Chapter seven (submitted to Adipocyte) reports the 

effects of feeding FF-DDGS to pigs on fat quality and how fat quality varies amongst 

adipose depots.  Finally, chapter eight is a summary of results and conclusions from 

chapters three through seven and suggestions for future research emphases. 

Explanation of appendix 

 The appendix on the topics of modeling adipocyte physiology (Published in 

Adipocyte) was completed as a valuable portion of my training for specialization in 

Biochemical and Molecular Nutrition and to provide experience and expertise for my 

post-graduate work.   
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CHAPTER 2 

REVIEW OF LITERATURE 

Distillers grains and livestock production 

Ethanol production has undergone tremendous expansion with the shift from 

fossil fuels and towards the utilization of bio-renewable fuel sources.  In the United 

States, and particularly in the Midwest, ethanol is produced primarily from corn (Fig. 1), 

with roughly 30% of total corn produced being used to make ethanol (~ five billion 

bushels).  This shift to bio-renewable fuel sources has resulted in a production increase 

from 314 million liters in 1981 to more than 56 billion liters in 2015 (U.S. Energy 

Information Administration, 2017), which, in turn, produces approximately 1.7 billion 

bushels of distillers grains (DG) (Liu, 2011).  Because the fermentation of the 

carbohydrate component of the corn kernel removes about two-thirds of the total mass of 

the kernel, the protein and non-fermentable portion of the corn remains and is 

concentrated roughly three times (Liu, 2011). The fermentation process and concomitant 

concentration of unfermentable substrate, particularly protein, makes DG an often 

economical protein source for livestock. Utilization of DG in the rations of livestock has 

not been without risk because nutrient composition and quality have tended to vary 

widely depending on source (Belyea et al., 2004; Belyea et al., 2006; Rosentrater et al., 

2007; Liu et al., 2008). The increased perceived value of DG as an animal feed will, 

however, likely continue to drive ethanol production plants to improve consistency of 

nutrient composition.   

Depending on the type of livestock, incorporation of DG into rations can be 

challenging for a variety of reasons.  For instance, the relatively high fat content of 
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traditional distillers grains (11-13%, DM basis) limits inclusion rates for ruminants 

because fiber fermentation is inhibited when rations contain greater than 5% fat (Zinn, 

1989).  Additionally, the fat (corn oil) is a highly unsaturated fat (92% unsaturated; 

Ramos et al., 2009), which presents problems as well.  In pigs, excessive feeding of lipids 

rich in unsaturated fatty acids can lead to the development of soft bellies, decreased 

ability of the processor to produce high quality pork, and decreased oxidative stability, 

which can lead to decreased consumer acceptability (Stein and Shurson, 2009). In 

ruminants, unsaturated fatty acids are toxic to rumen microbes (Maia et al., 2007), likely 

because of a combination of disruption of metabolism of butyrate-producing bacteria 

(e.g., Butyrivibrio fibrisolvens; Maia et al., 2010) and disruption of cellular integrity 

(Cartron et al., 2014).  Disrupting butyrate production would result in a decrease in 

substrate for de novo lipogenesis. In ruminants, unsaturated fatty acids can also lead to 

production of the bioactive trans-10 cis-12 conjugated linoleic acid, which inhibits de 

novo lipogenesis in the mammary gland (Baumgard et al., 2001), in part through 

inhibition of stearoyl-COA desaturase (SCD)-1 production by decrease in mRNA 

concentrations of liver X receptor (LXR)ɑ and sterol regulatory element binding protein 

(SREBP)-1c, which are both transcription factors that regulate production of SCD-1 

(Bauman et al., 2008; Obsen et al., 2012).  Another concern, primarily in beef feeding, is 

the relatively high concentration of sulfates in DG. The rumen is a highly reducing 

environment and will readily reduce sulfates to hydrogen sulfide, which, when eructated, 

can lead to polioencephalomacia (PEM) (Schingoethe et al., 2009).   

Improvements in production practices that lead to increased nutritional 

consistency will, however, help facilitate successful incorporation of DG into livestock 
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rations.  Additionally, the relatively new emergence of reduced-fat DG (RFDG) in the 

market offers a solution that could lead to increased incorporation rates into the rations of 

livestock because of the decreased concentration of unsaturated fatty acids in RFDG.   

There are a number of different forms of distillers products, including both wet 

and dry DG and full- and reduced-fat (DG).  The typical dry-grind production process, 

including the co-products generated, is outlined in Figure 2.  For brevity, and because 

they are the most commonly utilized forms, only DDGS and RF-DDGS will be reviewed 

further. Compiled compositions of RF-DDGS are shown in Table 1, along with medium- 

and high-fat DDGS (traditional).  Medium-fat DDGS (MF-DDGS) is typical from an 

ethanol production plant that is not as effectively removing oil from DDGS compared 

with those producing RF-DDGS.  With the high value of corn oil, FF-DDGS are scarcely 

available currently, and will likely become completely unavailable soon.   

 Feeding DDGS to ruminants is not a new topic.  In fact, there are reports of 

feeding the by-products of ethanol fermentation, which were referred to at the time as 

“distillers slop”, to ruminants dating back well over 100 years (Henry, 1900; Morrison, 

1939; Garrigus and Good, 1942). Because of the recent rapid expansion of ethanol 

production and increased availability of DDGS, feeding DDGS has been extensively 

researched recently.  Because DDGS are often an economical protein source (~30% 

protein on a DM basis), they are an attractive feedstuff for ruminant animals, but 

inclusion of DDGS in the ration of ruminant animals must be done with certain 

considerations. The fermentation process removes a major portion of the corn kernel, and 

the remainder of the components (e.g., protein, fat, and minerals) are concentrated 

approximately three-fold (Liu, 2011).  This concentration of nutrients can be good, in the 
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case of protein, or problematic in the case of certain minerals (e.g., sulfates) or fat.  

Ruminants, in general, require diets that contain no more than 5% fat on a DM basis to 

not hinder optimal ruminal fiber fermentation (Zinn, 1989).  Additionally, some sources 

of DDGS can contain nearly 1% sulfur on a DM basis (Schingoethe et al., 2009), which 

can be problematic for ruminants when high inclusion rates of DDGS are utilized because 

the rumen will readily convert dietary sulfates to hydrogen sulfide.  The conversion of 

sulfate to hydrogen sulfide volatilizes as a toxic gas, which then can be eructated and 

inhaled.  Hydrogen sulfide inhalation can lead to neurological disorders, particularly in 

beef cattle that are routinely fed up to 40% DDGS on a DM basis, such as 

polioenchephalomacia (PEM) (Schingoethe, 2009). Additionally, the primary protein in 

corn is zein, which is limiting in both lysine and methionine; so, utilization of DDGS 

must also account for providing adequate limiting amino acids.  However, zein is a rumen 

undegradable protein (~40% digested in the rumen; McDonald, 1945), and the results of 

many experiments evaluating the comparative value of feeding DDGS or soybean meal 

showed that DDG protein is 2.4 times the economic value of soybean meal (Aines et al., 

1987).  Dried distillers grains with solubles are also a “good” source of NDF as 

determined by proximate analysis, and the NDF is highly digestible (62 – 71% digestible; 

Birkelo et al., 2004; Vander Pol et al., 2009). However, because of the small particle size, 

DDGS are not a particularly good source of physically effective NDF (Kleinschmit et al., 

2007; 3.4 to 19.8% of NDF is physically effective).  When managed properly, rations 

including DDGS, however, can be utilized effectively to decrease DMI, increase milk fat 

and protein production, and improve average daily gain (ADG), which will be reviewed 

further below.    
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Effects of feeding distillers grains to ruminant animals: production parameters and 

feed efficiency 

 Utilization of DDGS in the beef cattle industry 

 Although none of the chapters in this dissertation involve feeding DDGS to beef 

cattle, extensive research has investigated the effect of feeding DDGS to beef cattle; so, 

review is warranted.  Klopfenstein and colleagues (2008) did an extensive review of 

literature on this topic.  The research was summarized as a meta-analysis and concluded 

that DDGS could be effectively fed to beef cows at inclusion rates of up to 40% of 

dietary dry matter.  When DDGS were included in the diet, DMI increased for every 

inclusion rate (i.e., 10, 20, 30, and 40%) as was ADG; however, the response was 

quadratic. So when gain:feed was analyzed, there were no differences between control 

and 40% DDGS, making the feeding value of DDGS equivalent between control and 

40% DDGS.  However, it would likely be economically favorable to feed the 40% DDGS 

ration over the control ration.  They concluded that the optimal inclusion rate that 

resulted in the greatest feeding value was 20%.  Yield grade also increased as inclusion 

rates increased; marbling score, however, tended to decrease, with the lowest score 

occurring when cows were fed 40% DDGS.   

It is important to note that since the review by Klopfenstein and colleagues, the 

composition of distillers grains has changed dramatically, with FF-DDGS being the 

primary type of DDGS available at that time to the DDGS that are currently available, 

which are more like the MF-DDGS or RF-DDGS.  Therefore, further review and research 

is warranted. 
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A meta-analysis using data from 20 forage-based growing systems (including 

both pasture and confinement systems) that utilized supplemental DDGS indicated that, 

in all cases, when DDGS was supplemented, ADG and final body weight (BW) increased 

when compared with cows fed a control diet (Griffin et al., 2012a). Additionally, when 

mature Angus-cross beef cows were fed a diet containing DDGS during late-gestation, 

they gained more weight than did cows fed control, but this weight gain was not 

accompanied by a difference in body condition score (BCS).  Also, plasma glucose 

concentration between diets was not different, but cows fed DDGS diet did have greater 

plasma blood urea nitrogen (BUN), indicating that protein supply may have been 

excessive, but no changes in conception rate were observed, accompanied by no 

difference in occurrence of post-partal disease or milk yield and composition.  However, 

plasma metabolites and hormones did change during gestation, indicating that cows fed 

DDGS during gestation were more efficient at partitioning energy to support fetal 

growth, as evidenced by the heavier birth weight of calves born to those cows (Radnuz et 

al., 2010). When investigating winter feeding strategies, lactating beef cows fed DDGS 

lost less weight, but there was no difference in milk production or in calf ADG; however, 

the control diet was estimated to be nearly a dollar more expensive per cow per day 

(Braungardt et al., 2010).  Griffin and colleagues (2012b) performed two replicated 

summer experiments in which steers were fed the same inclusion rates DDGS; however, 

results were mixed.  In the first experiment, ending body weight was not different, but in 

the second experiment, ADG and ending BW increased linearly but quality grade and 

yield grade were not affected.  Feeding DDGS to beef heifers also increased organic 

matter, crude protein, NDF, and ether extract digestibility and, as a result, increased 
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digestible energy.  The increase of digestible energy, however, was accompanied by 

increased nitrogen and phosphorus excretion, which could indicate excess supply of 

protein and have implications for waste management strategies (Walter, 2011).      

Finally, in 2010, when 240 Angus crossbred steers were fed either 20 or 40% 

DDGS (DM basis), carcasses from steers fed DDGS had greater fat thickness and yield 

grade, and less percentage of carcasses graded one or two when compared with control.  

Additionally, ground beef from steers fed DDGS had greater ɑ-tocopherol concentrations 

but also had greater concentrations of polyunsaturated fatty acids (PUFA), which resulted 

in greater concentrations of thiobarbituric acid reactive substances (TBARS) on day 2 in 

the retail display case.  This increased concentration of TBARS is likely a result of 

decreased oxidative stability from increased PUFA concentrations (Koger et al., 2010). 

Aldai and colleagues (2010) also saw increased PUFA concentrations in back fat when 

steers were fed either 20 or 40% DDGS.  Results regarding beef quality, however, are 

mixed, with improved palatability and tenderness of beef from cows fed either 20 or 40% 

DDGS but decreased beef flavor when compared with control (Aldai, 2010). 

 Utilization of DDGS in the dairy cattle industry 

Utilization of DDGS in the dairy industry is also not a new topic, as DG have 

been fed for over 100 years (reviewed in Loosli et al., 1952) and have been reviewed 

extensively in Schingoethe et al. (2009).  Schingoethe and colleagues (2009) concluded 

that DDGS are a good source of protein (~30% protein), high in RUP, and is a good 

source of net-energy for lactation (NEL).  The reviewed body of research, however, was 

focused on DDGS that contained approximately 10% fat, which they concluded could be 

utilized at a 20% inclusion rate as long as sufficient forage was provided (50% of DM).  
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Increasing DDGS inclusion rates beyond 20% could be done effectively; however, this 

resulted in overfeeding of crude protein (CP) and phosphorus such that the increased 

performance was offset by the loss of the effective utilization of protein and mineral.  

Finally, they concluded that DDGS may contain high concentrations of NDF, but particle 

size limits the effectiveness of the NDF (Schingoethe et al., 2009).   However, as with the 

beef industry and as previously mentioned, the body of research reviewed was DDGS 

that contained approximately 10% fat, and as discussed, with the value of corn oil, those 

types of DDGS are not widely available and could likely be completely unavailable in the 

future.  The change in composition of available DDGS resulting from improved oil 

extraction (Majoni et al., 2011) shifting from FF-DDGS to RF-DDGS has re-invigorated 

DG research with lactating dairy cows. The following review will, therefore, be focused 

on the feeding of the presently available RF-DDGS when compared with FF-DDGS and 

control diets. 

When 36 early lactation Holstein cows were fed one of three diets formulated to 

be similar in fat, NDF, and to be isonitrogenous and isoenergetic (control, 22% DDGS; 

10.8% ether extract), and 20% RF-DDGS (3.5% ether extract), DMI and milk fat and 

lactose percentages did not differ; milk protein percentage and yield, however, was 

increased when cows were fed either form of DDGS (Mjoun et al., 2010a). Additionally, 

plasma non-esterified fatty acids (NEFA) and glucose were unaffected by treatment for 

cows fed either form of DG. These results indicate that either RF-DDGS or DDGS could 

be included in properly balanced rations with no negative effect on measured 

performance parameters and with an increased milk protein yield (Mjoun et al., 2010a).  

Mid-lactation multiparous and primiparous Holstein cows fed either 0, 10, 20, or 30% 
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RF-DDGS (DM basis) in place of soybean meal produced milk that contained linearly 

increasing percentages of milk fat (3.18 to 3.72%) but had no influence on DMI or milk 

yield.  Additionally, milk urea nitrogen decreased linearly as RF-DDGS inclusion 

increased (15.8 to 13.1 mg/dL). Interestingly, milk protein percentage responded 

quadratically, with control and 30% RF-DDGS not differing and peak protein percentage 

occurring when inclusion rates were 20%.  In addition, feed efficiency (energy-corrected 

milk/DMI) tended to increase as inclusion rates increased as did plasma glucose 

concentration (Mjoun et al., 2010b). Taken together, these two studies indicate that 

inclusion of RF-DDGS in place of soybean meal can be included up to 30% (although 

20% seems to be optimal) on a DM basis without adversely affecting production 

parameters and can increase milk protein percentage. This increase in milk protein 

percentage is likely the result of RF-DDGS containing approximately 60.4% rumen 

undegradable protein (RUP) that is approximately 92.4% degradable in the intestine 

(Mjoun et al., 2010c).  Consistent with the studies by Mjoun et al. (2010a,b,c), feeding 

RF-DDGS did not influence DMI in the study by Foth and colleagues (2015). 

Inconsistent with that of Mjoun and colleagues, milk protein percentage was significantly 

decreased and milk fat percentage did not vary between treatments (Foth et al., 2015). 

When 20 Holstein dairy cows were fed one of four diets (control, 30% FF-DDGS, 30% 

RF-DDDS, or 30% RF-DDGS supplemented with 1.9% rumen inert fat), DMI was not 

affected for any of the DDGS-containing diets but was decreased with cows fed the 

control diet.  There was also a tendency for cows fed any of the DDGS-containing diets 

to have increased milk production a greater protein percentage.  Interestingly, only cows 

fed FF-DDGS had a decrease in milk fat percentage, indicating that RF-DDGS was 
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protective against milk fat depression associated with feeding of FF-DDGS, which is 

supported by the observation that trans-10, cis-12 CLA was only detected in milk from 

cows fed FF-DDGS (Ramirez-Ramirez et al., 2016). As mentioned previously, trans-10, 

cis-12 CLA can induce milk fat depression by inhibiting de novo lipogenesis (Baumgard 

et al., 2001). Finally, when cows were fed 0, 10, 20, or 30% of dietary dry matter as RF-

DDGS, milk yield was unaffected by treatment in each of two replicated experiments 

(both treatments utilized the same treatment diets; Castillo-Lopez et al., 2014). Protein 

percentage tended to increase in the first experiment but was unaffected in the second 

experiment.  Additionally, milk fat percentage was unaffected in either treatment, as was 

total rumen VFA concentration.  On the other hand, digestibility of DM, organic matter 

(OM), neutral detergent fiber (NDF), and non-fiber carbohydrate (NFC) tended to 

increase linearly with inclusion of RF-DDGS.  

Recently, limited investigations into the use of RF-DDGS in the rations of 

replacement heifers has been done (Anderson et al., 2015; Schroer et al., 2014).  No 

treatment differences were observed, indicating that RF-DDGS can be utilized as 20% of 

the dry matter in the rations of growing heifers when compared with tradition FF-DDGS. 

Clearly, inclusion of RF-DDGS in the rations of lactating dairy cows can be done 

effectively but, because the product is relatively new, limited research has been done. 

Further research is warranted to evaluate the effects on production parameters of lactating 

dairy cows. 

Feed-related off-flavors in milk 

Feed-related off-flavors in milk are significant problems for the dairy industry 

because of the associated decreased consumer acceptability of dairy-derived products. 
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Understanding the causes of off-flavors is very important to enable understanding of 

factors contributing to the shelf-life of products, preventing loss of nutritional value 

associated with the oxidation of lipids and proteins of milk and improving consumption 

of dairy products. The adoption of dairy products in the diets of American consumers is 

already an issue faced by the dairy industry because of the perceived negative health 

effects (Haug et al., 2007) or because of availability of alternative beverages that are 

prefered by consumers (e.g., sugar-sweetened drinks; Gills, 2003; Forshee and Storey, 

2009).     

One source of oxidized-off flavors in milk is light-induced oxidation, which 

occurs when light oxidizes unsaturated fatty acids, producing free radicals, especially in 

the presence of riboflavin, which acts as a photosensitizer of milk to yield light-induced 

oxidation (Chapman et al., 2002). Unsaturated fatty acids are particularly susceptible to 

oxidation because of the relative ease of extraction of allylic hydrogens from double 

bonds by pro-oxidants, which can lead to free-radical-catalyzed chain-reaction lipid 

autoxidation unless the lipid source is depleted or the radical species are quenched by an 

antioxidant (Frankel, 1996). Oxidized off-flavors in milk are characterized by a 

“cardboard” or “burnt feather” flavor (Costello and Clark, 2009). This process occurs 

very rapidly in a commercial setting as one half of all milk products remain in a lighted 

dairy case for at least eight hours, and off-flavors can be detected in as little as 15 

minutes by trained evaluators and 52 minutes by the normal consumer (Chapman et al., 

2002).   

Milk fat from cows fed DG, particularly wet distillers grains (WDG), contains 

higher concentrations of unsaturated fatty acids and, in particular, concentrations of cis-9 
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trans-11 conjugated linoleic acid, especially when fed at concentrations higher than 20% 

(Anderson et al. 2006).  In 2009, Nelson and Martini showed that an increase in 

eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and conjugated linoleic acid 

(CLA) in milk produced from cows fed fish-oil supplemented rations has little impact on 

flavor of milk as determined by a panel of trained sensory evaluators.  This increased 

concentration of CLA is particularly interesting because of the numerous health benefits 

associated with increased dietary intake of CLA (Benjamin and Spener, 2009).    

Increases of unsaturated fatty acids and omega-3 fatty acids, however, are not 

without negative effects.  High concentrations of CLA tend to be associated with milk 

that has a “grassy” off flavor (Campbell et al., 2003).  Higher concentrations of 

unsaturated fatty acids are also characterized by an “oily” flavor (Kolanowski et al., 

2007). Increased CLA increases the susceptibility of milk to oxidation (Liu et al., 2010). 

Supplementation of fish oil (a source of highly unsaturated fatty acids) to the rations of 

dairy cows also contributes to oxidative susceptibility of milk, presumably because of the 

increased concentration of unsaturated fatty acids in the milk (Shingfield et al., 2006).  

Although increased bioactive fatty acids, such as cis-9 trans-11 CLA, EPA, DHA, and 

other omega-3 fatty acids are desirable from a nutritional standpoint, it is still important 

to consider its impact on consumer acceptability of milk because if the consumer does not 

consume the product they cannot benefit from healthfulness of milk, regardless of 

composition.   

Another important factor with regards to oxidation of milk is the nutritional loss 

that accompanies lipid oxidation. Measurable losses of vitamin A accompanied with 

light-oxidized flavor can occur as soon as after two-hours of light exposure (Whited et 
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al., 2002), which can be particularly harmful as vitamin A deficiency is estimated to 

affect between 45 and 122 countries worldwide (World Health Organization, 2009). In 

addition to loss of nutritive components of milk through lipid oxidation, anti-health 

components (e.g., 4-hydroxynonenal and malonaldehyde) can be generated that can cause 

in vivo modification of lipoproteins that make them more atherogenic and lead to foam-

cell formation (Esterbauer, 1993).  

Attempts to improve oxidative stability of milk through supplementation of 

antioxidants either to the cow or directly to the milk, however, have had mixed results. 

Selenium, a component of the glutathione antioxidant system (i.e., glutathione 

peroxidase), supplemented at 25 mg day-1 of organic selenium to cows has little impact 

on oxidative stability of milk (Clausen et al., 2010). The lack of benefit of selenium 

supplementation is perhaps because glutathione peroxidase is hydrophilic and only able 

to act at the surface of the milk fat droplet whereas lipid autoxidation would 

predominantly occur within the lipid droplet.  Tocopherols are very important to the 

oxidative stability of milk (Slots et al., 2007) because they are lipophilic and able to act 

within the milk lipid droplet, but supplementation of α-tocopherol to the diet or milk does 

not ensure oxidative stability of milk (Slots et al., 2007; Testroet et al., 2015). Van Aardt 

and colleagues (2005) demonstrated that both vitamins E and C were needed to protect 

milk from light-induced oxidation for 10 hours, presumably because vitamin C 

(hydrophilic) and vitamin E (lipophilic) provide supplemental antioxidants to both the 

milk serum and the milk fat.  Perhaps supplementation of vitamins E and C with 

concomitant supplementation of sodium selenite would further improve oxidative 

stability of milk when compared with the results shown by Van Aardt and colleages 
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(2005). These investigations have led to the understanding that, although oxidation is 

correlated to the composition of milk, including fatty acid profile, vitamin E, vitamin C, 

and carotenoids, none of these can solely explain lipid oxidation (Barrefors et al., 1995; 

Granelli et al., 1998; Clausen et al., 2010).   

Another source of off-flavors, unrelated to oxidation, but equally important to 

flavor, are volatile sulfur compounds. These compounds included hydrogen sulfide, 

methanethiol, carbonyl sulfide, dimethyl sulfide, carbon disulfide, dimethyl disulfide, 

dimethyl trisulfide, dimethyl sulfoxide, and dimethyl sulfone (Burbank and Qian, 2005).  

Because the rumen is a highly reducing environment, ruminants produce hydrogen 

sulfide from dietary sulfates.  Distillers grains typically contain a relatively high 

concentration of sulfate (Neville et al., 2010) because sulfuric acid is used in the cleaning 

process in ethanol production plants (Klopfenstein et al., 2007). It has been shown that 

dietary supplementation of thiamine (150 mg/animal per day) and DG in ruminant 

animals, in this case sheep, increases hydrogen sulfide concentrations in the carcass of 

the animal (Neville et al. 2010).  Increased hydrogen sulfide production in the rumen 

could, therefore, lead to increased incorporation of hydrogen sulfide in milk, resulting in 

off-flavors because of the high-volatility and low-concentration required for detection by 

humans (0.5-10 ppb; Ruth, 1986) and because flavor is primarily determined through 

olfaction (Spence, 2015). 

The numerous sources of off-flavors in milk, both from lipid oxidation and 

transference of off-flavor compounds originating from ruminal reduction of minerals, in 

particular sulfates, leads to an area of investigation into milk quality that has been mostly 

overlooked. Extensive research has been done investigating the effects of feeding several 



www.manaraa.com

21 
 

 
 

forms of DG to lactating dairy cows on fatty acid composition of milk and the efficiency 

of milk production (Schingoethe et al. (2009). Minimal research, however, has been done 

to investigate the effects on flavor, oxidative stability, and general consumer acceptability 

of milk from cows fed rations containing DGs. Distillers grains, as a dietary component, 

have been shown to have definite beneficial impact on the fatty acid composition of milk, 

but the impact of this alteration in fatty acid profile on the flavor and general consumer 

acceptability of milk hasn't been thoroughly investigated  The need for investigation into 

the impact of how feeding practices affect oxidative stability and flavor of milk, and as a 

result consumer acceptability of milk, became apparent as early as spring of 2009 and 

2010 when recurring customer complaints regarding milk from Hy-Vee stores in Iowa 

motivated farmers, educators, and Roberts Dairy in Des Moines, IA to investigate this 

problem (personal conversation).  Upon investigation of the milk that was being rejected 

by consumers as “bad”, experienced milk evaluators attributed the off-flavors to oxidized 

products in milk.  Those off-flavors, however, were not derived from light-induced 

oxidation but rather were originating at the farm, occurring in raw milk that was initially 

good, but within three to five days became oxidized at the plant or grocery.    

Because of the many potential sources of lipid oxidation and off-flavor compounds 

that could be introduced to milk, a thorough understanding of the effects of feeding 

practices of dairy cows and their influence on quality of milk produced by those cows is 

of great importance to investigate. 

Utilization of DDGS in Swiss cheese production 

 High quality Swiss-type cheeses are defined by four characteristics: 1) natural, 

attractive, uniform ivory to light yellow color, 2) mild, pleasing, characteristic sweet 
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hazelnut-like flavor, 3) round or slightly oval-shaped eyes that are relatively uniform in 

shape, and 4) uniform, firm, smooth texture, and slightly elastic bodies (Cakir and Clark, 

2009).  Many defects in Swiss-type cheeses can occur, but one such defect of particular 

interest and relevance to the DG industry is the late-blowing defect, which can be 

characterized by appearance of undesired slits, cracks, splits, or blown areas in the body 

of the cheese.  This defect is undesirable to consumers who expect uniform and even eye 

distribution.  Additionally, this defect is undesirable to high speed slicing operations 

because these defective cheeses cannot be sold at full-price, resulting in economic losses 

for the cheese producer (White et al., 2003).  

 Typical eye formation in Swiss cheese occurs when fermentation of lactose to 

carbon dioxide and lactate takes place by the starter culture Propionobacterium 

freudenrichii spp. shermanii. Secondary fermentation then occurs where the lactate 

is further metabolized to produce propionate, which depending on the organism can occur 

by the acrylate pathway or the succinate pathway. Excessive gas formation, however, can 

occur and lead to late-blowing if the concentration of the primary substrate for 

fermentation, lactose, is increased in cheese milk because, if not all lactose is fermented 

by starter cultures, secondary fermentation of residual lactose can occur (Farkye, 2014).  

Another potential cause of late-blowing is contamination of cheese milk by unwanted 

cultures, such as Clostridium tyrobutyricum, which can utilize lactate to produce not only 

carbon dioxide but also hydrogen sulfide, butyric acid, butanoic acid, and hydrogen gas 

(Fox et al., 2000; Fröhlich-Wyder and Bachmann, 2007).  These gasses are not as soluble 

in the cheese body as carbon dioxide and can lead to structural failure of the cheese as 

well as development of undesirable off-flavors.  
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The above potential causes of late blowing in Swiss-type cheeses has been linked 

to feeding of DDGS where it has been implicated that the feeding of low quality feed 

contaminated with Clostridial spores could result in the late-blowing defect (Houck et al., 

2007). This hypothesis, however, is not likely unless there is contamination of the cheese 

milk by the environment (e.g., manure) rather than direct contamination of the milk by 

the feed (i.e., in a healthy animal, the bacteria would not be able to pass the gut barrier 

and end up in the milk).  Indeed, these were the results published by Sankarlal et al. 

(2015) where cows were fed one of three concentrations of FF-DDGS (0, 10, and 20%), 

and no treatment effect on quality of baby Swiss cheese was observed.  In addition, no 

gas-producing spores were found in the DDGS but were found in the manure, all the 

treatment diets, and the cheeses produced.  The milk produced from those cows, 

however, had increased PUFA and protein and a tendency for increased lactose 

concentration.  The increased concentrations of lactose from cows fed DDGS also has 

been shown previously (Tanaka et al., 2011).  Because lactose is the primary substrate 

utilized for fermentation in cheese production, increased lactose concentration in milk 

could also result in excessive gas formation. The potential of lactose to increase gas 

formation could possibly explain the findings of gas-producing spore-forming bacteria 

and an atypical appearance in all cheeses regardless of treatment reported by Manimanna 

Sankarlal et al. (2015).   

Because DDGS are becoming a prevalent feed source in the U.S. with the 

increased production of ethanol, it is inevitable that DDGS will be included in the rations 

of dairy cows. Research investigating the suitability of milk from cows fed DDGS and 
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more recently RF-DDGS for production of high quality dairy products, such as Swiss-

type cheeses, is lacking, and further investigation is warranted. 

Utilization of DDGS in the pork production industry: pork quality 

 Distillers grains have been utilized in swine feeding practices for more than 50 

years (Fairbanks et al., 1944; Fairbanks et al., 1945) and have been reviewed extensively 

by Stein and Shurson (2009).  Stein and Shurson (2009) concluded that DDGS are an 

excellent source of energy and digestible protein for swine. Inclusion rates, however, are 

limited by the high concentration of linoleic acid in corn oil that can result in pork fat 

becoming softer.  The problems associated with feeding DDGS (e.g., soft belly) that are 

unacceptable to the producer and negatively influences consumer acceptability of pork 

could potentially be limited by feeding maximal inclusion rates of 20% as fed or by 

employing a 30-day withdrawal period pre-harvest. The effectiveness of the 30-day 

withdrawal period on producing pork with acceptable iodine values from pigs fed up to 

30% DDGS (as fed basis) was demonstrated in 2010 by Xu et al.  They also concluded 

that DDGS can be fed in gestational diets effectively and may even improve litter size. 

Since the time of review by Stein and Shurson (2010), composition of DDGS has been 

altered dramatically to contain less fat on a dry matter basis. Earlier work was mainly 

focused on grow-finish performance, whereas more recent research has been focused on 

the influence of feeding DDGS on pork and pork fat quality.   

Inclusion of DDGS in the rations of growing pigs traditionally has been limited by the 

highly unsaturated nature of corn oil.  Because pigs, like nearly all animals, cannot 

produce specific PUFA, these fatty acids can only be derived from dietary sources 

(Wood, 2008). Feeding rations to pigs that are rich in unsaturated fatty acids is 
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particularly problematic because pork adipose then becomes enriched in unsaturated fatty 

acids and can attain greater than 60% unsaturated fatty acids (Lawrence and Fowler 

2002).  If unsaturated fatty acid content of adipose is raised above 60%, oxidative 

stability can be negatively affected, which can result in the meat being more prone to 

development of off-flavors and odors (Wood et al., 2008). Dried distillers grains with 

solubles, especially FF-DDGS, are a particularly rich source mono- and polyunsaturated 

fatty acids because corn oil is approximately 92% unsaturated. Feeding FF-DDGS can, 

therefore, lead to the fatty acid composition of the adipose tissue in nonruminants 

becoming highly unsaturated in nature. It is well known that feeding DDGS can increase 

iodine value (IV) of pork fat (Benz et al., 2010, Kellner et al., 2014).  Several problems 

can arise if pork fat becomes too rich in unsaturated fatty acids (e.g., soft-bellies, poor 

sliceability of pork, decreased oxidative stability, Stein and Shurson, 2009). 

One way to determine quality of pork fat is to measure IV, either directly or indirectly 

(Kyriakidis and Katsiloulis, 2000), which is a metric of degree of unsaturation of pork 

lipids. Iodine value is the current indicator used by industry for determination of pork fat 

quality (Benz et al., 2011).  In general, pork fat in North America is considered 

unacceptable if IV is greater than 74 (Boyd et al., 1997).  However, it has been shown 

that IV varies by anatomical location (Kellner et al., 2014; Sørensen et al., 2013); so, 

further research is warranted to investigate how IV varies amongst anatomical location, 

between gender, and between breeds because of the potential economic loss to producers 

(i.e., does one fat quality of one sampling location accurately predict fat quality of other 

adipose depots). Recently, a method for predicting IV in pigs fed RF-DDGS with NIR 

spectroscopy has been developed, which could help producers ensure high quality pork 
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production (Prieto et al., 2014) by allowing quick and reliable testing of pork fat from 

multiple adipose depots. 

As mentioned previously, when pigs are fed DG, the potential for development of off-

flavors is increased.  When crossbred pigs were fed DDGS, there was no difference in 

oxidation of intramuscular fat in the longissimus muscle and taste tests revealed no 

treatment effects from diet on flavor, off-flavor, tenderness, juiciness, and overall 

consumer acceptability.  Additionally, no effects were found on the sensory attributes, 

with the exception of tenderness and fattiness, which decreased linearly, even though IV 

of back, belly, and longissimus intramuscular fat increased when DDGS were fed (Xu et 

al. 2009).  With the recent advent of RF-DDGS, the potential to avoid negative effects of 

high inclusion rates of FF-DDGS is possible.  When pigs were fed 20 or 40% RF-DDGS 

or 20 or 40% FF-DDGS, IV increased linearly, regardless of source.  Additionally, the 

decreased energy content of RF-DDGS resulted in a linear decrease in gain to feed ratio 

(G:F), whereas feeding FF-DDGS did not affect G:F (Graham et al., 2014). Clearly, the 

results that can be expected with inclusion of DDGS in the rations of swine depend on 

inclusion rate and fat concentration of the diet. With the relative scarcity of FF-DDGS 

resulting from the shift to RF-DDGS occurring relatively recently, sensory evaluation 

data of pork and pork fat produced from pigs fed RF-DDGS is currently lacking and 

future research will need to be performed to determine the impact of utilization of this 

relatively new feedstuff in the rations of growing pigs
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TABLES AND FIGURES 

 

Table 1. Nutrient compositions of distillers grains with different concentrations of fat 

compared with soybean meal (dry-matter basis). 

Nutrient RF-DDGS1 MF-DDGS2 FF-DDGS3 Soybean meal 

Dry matter, % 88.83 89.26 89.63 90.0 

Crude protein, % DM 32.69 31.90 28.76 38.0 

Fat, % DM 5.47 8.05 12.96 18.0 

ADF, % DM 11.93 16.48 15.74  

Calcium, % DM 0.12 0.11 0.13 0.25 

Phosphorus, % DM 1.00 0.83 0.83 0.59 

Sulfur, % DM 1.07 0.48 0.52 0.30 

Adapted from Anderson and Engel, 2014 
1Reduced-fat dried distillers grains with solubles 
2Medium-fat dried distillers grains with solubles 
3Full-fat dried distillers grains with solubles 
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Figure 1. Schematic representation of total corn produced in the United States and the 
percentage of that corn that is utilized for production of ethanol. 
Source: U.S. Domestic Corn Use Graph Data. Calculated by USDA Economic Research 
Service, 1980-2015, Last Accessed: 08/03/2016 and U.S. Corn Acreage, Production, 
Yield and Price data. Calculated by USDA Economic Research Service, 1926-2015, Last 
Accessed: 08/03/2016 
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Figure 2. Schematic diagram of conventional ethanol and distillers grains from corn.  
WDGS = Wet distillers grains with solubles, DDGS = Dried distillers grains with 
solubles, RF-DDGS = Reduced-fat dried distillers grains with solubles. (Adapted from 
Liu, 2011)  
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CHAPTER 3 

LACTATIONAL PERFORMANCE OF HOLSTEIN DAIRY COWS FED TWO 

CONCENTRATIONS OF FULL-FAT DRIED DISTILLERS GRAINS WITH 

SOLUBLES 

E. D. Testroet, S. Clark, & D.C. Beitz 

Submitted to Professional Animal Scientist 3.21.17 

 

Abstract 

The objective was to evaluate production performance of lactating Holstein dairy cows 

fed two different dietary concentrations of full-fat dried distillers grains with solubles 

(DDGS; 13.6% fat).  Thirty cows were fed 0, 10, and 20% DDGS dry matter (DM) as a 

total mixed ration (TMR) in a 3 × 3 Latin square.  Cows were stratified into groups of 10 

by parity and days in milk and fed each of three diets in three 28-day periods. Our 

hypothesis was that feeding 20% DDGS (DM basis) would negatively influence 

production and feed efficiency of dairy cattle.  Milk yield was decreased significantly 

when fed 20% DDGS, and feeding DDGS caused milk fat depression and decreased daily 

fat yield, resulting in significant decreases in 3.5% fat-corrected milk (FCM) and energy-

corrected milk (ECM) yield.  Both protein and lactose percentages increased significantly 

when cows were fed 20% DDGS; neither protein nor lactose yield, however, was 

affected.  Protein efficiency, a measure of the utilization of dietary protein for milk 

protein synthesis, decreased significantly for cows fed 20% DDGS. All three measures of 

energetic efficiency (ECM/DMI, kg ECM/net energy for lactation (NEl) intake (Mcal), 

and gross energy of milk produced (Mcal)/NEl caloric intake (Mcal)) were significantly 
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decreased when cows were fed 20% DDGS. Feeding 10% FF-DDGS resulted in a 0.5% 

percentage decrease in milk fat concentration and feeding 20% resulted in a marked 

decrease in production when compared control. 

Introduction 

Dried distillers grains with solubles (DDGS) are an often economical protein 

source for animal production and are a good source of rumen undegradable protein 

(RUP) (Firkins et al., 1984; Powers et al., 1995) in the ration of a lactating dairy cow.  

Prior research has indicated that DDGS can effectively be fed to lactating dairy cows 

without changing dry matter intake (DMI) or milk fat percentage while either not 

affecting, or in some cases increasing yield of milk, energy-corrected milk (ECM) yield, 

fat percentage, protein percentage, and feed efficiency when compared with a traditional 

total mixed ration (TMR) (Anderson et al., 2006; Kleinschmidt et al., 2006; Havlin et al., 

2015).  Conversely, our prior research showed decreased milk fat percentage and milk 

yield when cows were fed 25% DDGS containing12.1% fat (Testroet et al., 2015).  It was 

the objective of this study to investigate the effects of feeding full-fat DDGS on the feed 

efficiency and production performance of lactating Holstein dairy cows.  In addition, 

based upon ours and others prior research, we hypothesized that feeding full-fat DDGS at 

20% of dietary DM to lactating dairy cattle would negatively influence the production 

and efficiency of dairy cows when compared with a traditional TMR. 

Materials and methods 

Animals and diets 

All experimental protocols were approved by the Iowa State University 

Institutional Animal Care and Use Committee prior to commencement of the study. 
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Thirty mid-lactation (164.4±16.2 DIM) multiparous Holstein cows were fed diets 

containing 0, 10, or 20% corn DDGS (Heartland Cooperative, Prairie City, IA).  Cows 

were assigned randomly to one of three treatment sequences in 3 × 3 Latin square design.  

Diets were formulated (Table 1) to be isonitrogenous and isoenergetic (Table 2).  Diets, 

however, were 0.5% crude protein greater than formulated (Table 2).  Feed proximate 

analyses done by wet chemistry (Dairylands Lab, Arcadia, WI).  Acid Detergent Fiber 

was determined by AOAC Official Method 973.18(1996) and Lignin by AOAC Official 

Method 973.18, ether extract was determined by AOAC Official Method 945.16 and 

AOAC Official Method 920.39, feed fatty acids were quantified by using the method 

described by Sukhija and Palmquist (1988), nitrogen was quantified by using AOAC 

Official Method 990.0, minerals were determined by ICP-MS by AOAC Official Method 

985.0 and AOAC Official Method 2011.14, NDF was determined as described by 

Mertens (2002), AD-ICP was determined by using AOAC Official Method 973.18 and 

AOAC Official Method 990.03, ash was determined by AOAC Official Method 942.05, 

and dry matter was determined by using NFTA Method 2.1.4.  Feed composition is 

represented as the mean of six samplings and presented in Table 2 showing that, as 

designed, no significant differences in crude protein and estimated net energy for 

lactation concentrations exist.   

Cows were housed at the Iowa State University Dairy Farm (Ames, IA) together 

in a 48-cow, free-stall pen and individually fed twice daily (0700 h and 1700 h) with a 

Calan Data Ranger (American Calan Inc., Northwood, NH) to allow for approximately 

15% refusal.  Feed ingredients in a TMR were mixed prior to being loaded onto the Data 

Ranger by using a Patz V615 mixer (Patz Corporation, Pound, WI).  Cows were allowed 



www.manaraa.com

41 
 

 
 

ad libitum access to food and water, except for three times daily during which they were 

being milked (8 h apart).  Initially, cows were allowed seven days to adapt to using the 

Calan gates (American Calan Inc, Northwood, NH).  For each 28-day experimental 

period, the first 13 days were used as a washout and excluded from the analysis to limit 

carryover effects.  Samples of TMR were collected and pooled over a period of three 

days from both daily feedings during weeks three and four of each experimental period.  

Samples of the otal mixed rations then were combined, randomly sampled, and sent to 

Dairylands Laboratory (Arcadia, WI) for proximate analyses by wet chemistry methods. 

Milk yield and composition 

Total milk yield was recorded daily using an automatic weighing milking system 

(Boumatic, Madison, WI).  During each period, on days 14, 21, and 28, individual milk 

samples were collected automatically from each milking to represent one complete 

milking by the Boumatic milking system (Boumatic, Madison, WI).  Milk samples (30 to 

40 mL at 22± 2°C) were then immediately transported to a laboratory for proximate 

analyses in duplicate by using a Lacticheck-01 RapiRead Milk Analyzer (Page & 

Pedersen Intl. Ltd., Hopkinton, MA).       

Statistical analyses 

Statistical analyses of milk composition, yield, and feed efficiency were 

performed by using SAS version 9.3 (Cary, NC) and Proc MIXED.  Data were analyzed 

as a 3 × 3 crossover design.  The model included three fixed effects (sequence, period, 

and treatment) and cow(sequence) as a random effect.  For variables with significant 

treatment effects, means were separated by using Tukey’s multiple comparisons tests.  

Crude protein and calculated net energy for lactation concentrations of feed were 
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analyzed by using the Student’s t-test.  Feed fatty acid composition was analyzed by 

using Proc MIXED with a model that included treatment and sampling date. Statistical 

significance was declared at P < 0.05.    

Results and discussion 

Five cows were removed from the trial because of illness (e.g., mastitis) and were 

not included in data analyses.  Dry matter intake (Table 3) was affected significantly by 

dietary treatments, but no diet-dependent trend is evident because the control is 

intermediate in amount to the 10 and 20% DDGS treatments.  Similar previous studies 

have reported no change in DMI for cows fed 10 and 20% DDGS DM (Anderson et al., 

2006; Kleinschmit et al., 2006).  To maintain isoenergetic and isonitrogenous diets, the 

ingredient composition of the control and 10% DDGS rations had to be altered 

significantly (Table 1).  It is possible that the changes in ingredient composition between 

the 10 and 20% DDGS diets can explain the decreased DMI observed for cows fed 10% 

DDGS and the increased intake observed for cows fed 20% DDGS.    

Milk yield (Table 3) was significantly decreased by 20% DDGS inclusion, but 

feeding DDGS at 10% inclusion did not differ from control or 20% DDGS.  However, 

both 3.5% FCM and ECM (Table 3) decreased as dietary DDGS inclusion increased.  

These results are supported by findings reported by Testroet et al. (2015), who also 

showed milk fat depression when cows were fed 10 and 25% DDGS (DM basis).  Dried 

distillers grains with solubles used in that study contained similar concentrations of fat as 

those in this study.  The decrease in FCM and ECM could be related to (1) inhibition of 

fiber digestion by increasing dietary fat (fat percentages: 0% DDGS was 5.6% fat, 10% 

DDGS was 6.9% fat, and 20% DDGS was 7.6% fat (Table 2)) or (2) inhibition of fat 
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synthesis in the mammary gland, or both.  Dietary fat linearly decreases fiber digestion in 

ruminants, with fat concentrations of 8% decreasing fiber digestibility by over 10% 

(Zinn, 1989).  Additionally, incomplete biohydrogenation of unsaturated fatty acids by 

rumen microbes leads to production of trans-10, cis-12 conjugated linoleic acid, which 

decreases de novo milk fat synthesis in the mammary gland (Baumgard et al., 2001).  

Moreover, feeding of unsaturated fatty acids to ruminants has long been known to induce 

milk fat depression (Brown et al., 1962; Beitz and Davis, 1964; Ensor et al., 1959; Garner 

and Sanders, 1938; Maynard et al., 1936; Moore et al., 1945; Ramirez Ramirez et al., 

2015).  Both the 10 and 20% DDGS treatment diets had significantly less SFA, more 

PUFA, and more unsaturated fatty acids (UFA) (Table 4).  In addition, as DDGS 

inclusion increased, the UFA/SFA concentration ratio of fatty acids significantly 

increased (Table 4).  Taken together, the increased UFA content, specifically the 

increased PUFA intake of cows fed the TMR containing DDGS diets and the inhibition 

of fiber digestion by the fat content of the TMR containing DDGS diets help explain the 

observed decrease in milk fat percentage and daily milk fat production observed in this 

study (Table 3).    

Our results, however, conflict with previously reported performance data where 

no change in fat percentage (Anderson et al., 2006; Kleinschmit et al., 2006) and 

increased FCM (Kleinschmit et al., 2006) and ECM were observed with inclusion of 

DDGS (Anderson et al., 2006; Kleinschmit et al., 2006).  One likely explanation for the 

differences in milk fat percentage and consequently ECM and FCM is that the fat 

content, and therefore the corn oil content (in particular PUFA intake, Table 3), of the 

DDGS in these other studies ranged from 9.7% up to 10.8%, whereas our DDGS 
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contained 13.5% fat.  A second possible explanation, or partial contributor, to the 

decrease in milk fat percentage is the forage being slightly less than 50% of the DM in 

the diets of the 10 and 20% DDGS treatments (Table 1), which has been suggested by 

Kalscheur et al. (2005) to contribute to milk fat depression.  Despite the high neutral 

detergent fiber (NDF) of DDGS, the particle size of DDGS makes them an ineffective 

source of fiber (Schingoethe et al., 2009).  Although the more effective source of forage 

(i.e., hay) remained constant in the three treatment diets, corn silage content of the 10 and 

20% DDGS treatments was decreased to accommodate DDGS inclusion (Table 1).  Lack 

of forage, however, cannot solely explain the decrease in milk fat percentage because 

even the 10% DDGS diet that contained 47.5% forage (Table 1) resulted in a loss of 

about 0.5% percentage points of milk fat (Table 3).  In addition, our prior research 

(Testroet et al., 2015) resulted in cows experiencing milk fat depression even when they 

were fed a 10% DDGS diet containing 57.1% forage DM and a 25% DDGS diet 

containing 54.3% forage, exceeding the 50% forage DM recommendation for effectively 

feeding DDGS at up to 20% DM (Kalscheur et al., 2005), thereby likely exceeding the 

22% forage NDF requirement.  In addition to our previous research, Benchaar et al. 

(2013) observed an increase in milk yield without a change in milk fat yield resulting 

from a decreased milk fat percentage when cows were fed diets containing 20 and 30% 

DDGS (16.3% fat) even when rations were formulated to contain 60.1% forage.  Another 

possible contributing factor to milk fat depression is dietary cation anion difference 

(DCAD).  Results of previous research have shown that increasing the DCAD value of 

the diet can improve milk fat percentage (Wildman et al., 2007; Hu et al., 2007; Harrison 

et al., 2012); however, Erdman et al. (2011) found no effect on milk fat percentage when 
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increasing DCAD.  In this experiment, low DCAD (Table 2) is unlikely to have 

contributed to milk fat depression because the DCAD of all three diets was very similar 

(<2.5 meq/100 g difference), and the cows fed 0% DDGS did not experience milk fat 

depression.  The most likely reason for the cows experiencing milk fat depression and for 

the inconsistent results from what has been reported previously by Kleinschmidt et al. 

(2006) and Anderson et al. (2006) is the amount of corn oil that was fed to the cows.    In 

the experiment by Kleinschmidt et al. (2006), the DDGS contained 7.21% fat, resulting in 

the 20% DDGS DM diet containing 0.41 kg of corn oil and 4.60% fat.  Anderson et al. 

(2006) fed DDGS that contained 9.67% fat, resulting in their 20% DDGS diet containing 

0.58 kg corn oil and 4.47% fat.  In this experiment, however, the DDGS contained 13.5% 

fat, resulting in our 10% DDGS diet containing nearly as much corn oil as 20% DDGS 

diets (in this experiment the corn oil content is as follows: 10% DDGS 0.47 kg corn oil, 

6.9% fat; 20% DDGS 0.85 kg corn oil, 7.6%) fat in the previously two mentioned 

experiments.   In addition, the unusually high fat content of the DDGS resulted in diets 

containing greater than optimal fat concentrations could have inhibited fiber digestibility 

and the greater amount of PUFA intake (Table 3) could have inhibited milk fat synthesis.    

Milk protein percentage was greatest in the 20% DDGS treatment group with a 

0.04 percentage point increase when compared with control (Table 3).  It is possible that 

the alteration of protein source (i.e., DDGS vs. soybean meal/blood meal), to maintain 

isonitrogenous diets, could explain some of the protein-related results. Total daily milk 

protein yield was, however, unaffected by treatment (Table 3).  Again, these results are 

inconsistent with prior research with dairy cows fed 20% DDGS that indicated a decrease 

in protein percentage with no change in protein yield (Anderson et al., 2006, Kleinschmit 
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et al., 2006).  The differences can be explained by the increases in milk yield observed by 

both Anderson et al. (2006) and Kleinschmit et al. (2006) that diluted the total protein 

and decreased the protein percentage.  In this study, however, we did not see increases in 

milk yield but, rather, a decrease in milk yield and no change in protein production when 

cows were fed 20% DDGS was observed.       

  Lactose percentage was increased for both cows fed 10 and 20% DDGS, but, as 

with total daily protein, total daily lactose production was unaffected by treatment (Table 

3). The lactose percentage and lactose yield are not consistent with prior work that 

showed no change in lactose percentage but an increase in total daily lactose production 

(Anderson et al., Kleinschmit et al., 2006), as would be expected if the increase in lactose 

production offset the dilution of lactose by increased milk volume.  As with the protein 

percentage and protein yield, the increase in lactose percentage and lack of change of 

total daily production of lactose could be explained by the decreased total milk volume 

produced when cows were fed 20% DDGS.  Also, both the increases in protein and 

lactose percentage with cows fed DDGS are in agreement with our prior research 

(Testroet et al., 2015).  

Protein efficiency, a measurement of utilization of dietary protein for milk protein 

synthesis, decreased significantly when cows were fed 20% DDGS when compared with 

cows fed 10 and 20% DDGS (Table 3).  The most likely explanation for the decreased 

protein efficiency of cows fed 20% DDGS is that those diets (Table 2) contained the 

greatest amount of acid-detergent insoluble crude protein (a measure of heat damage), 

which is less available to the animal for utilization (Goering et al., 1972; Yu and Thomas, 

1976).  Kleinschmit et al. (2006) observed an improvement in protein efficiency in cows 
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fed DDGS, but the acid-detergent insoluble crude protein was much lower in their study 

than in ours, indicating that the decreased protein efficiency in this study may have 

resulted from a greater amount of heat-damaged protein.  A second possible explanatory 

factor is the different protein sources that were utilized to maintain isonitrogenous diets.  

However, because DDGS are a good source of RUP (Firkins et al., 1984, Powers et al., 

1995), it would be expected that protein efficiency should increase with increased 

inclusion of DDGS.      

One measure of feed efficiency is the ratio of energy-corrected milk to dry matter 

intake (ECM/DMI).  The ECM/DMI decreased significantly for cows fed 20% DDGS 

when compared with cows fed 0% and 10% DDGS (Table 3).  The decrease in 

ECM/DMI is likely directly related to the decrease in milk fat production.  These results 

are not consistent with previous research that showed an improvement in ECM/DMI for 

cows fed 20% DDGS (Kleinschmit et al., 2006; Anderson et al., 2006).  Neither of these 

studies, however, observed milk fat depression, which is in contrast with our study.  

When compared with research published on cows fed a traditional TMR, previously 

reported ECM/DMI of Holstein cows ranged from 1.5 to 1.8 (Hart et al., 2014; 

Schingoethe et al., 2004; Wall et al., 2014).  Our cows performed similarly (1.68 and 1.67 

for cows fed 0 and 10% DDGS, respectively), but they performed significantly worse 

when fed 20% DDGS (1.41).  The results can be explained because there was no change 

in milk or protein yield for any treatment, but there was a significant depression in milk 

fat yield for cows fed 20% DDGS accompanied with the greatest DMI of any treatment.   

In addition to ECM/DMI, 3.5% FCM/DMI (FCM/DMI) can be used as a measure 

of feed efficiency.  In this study, FCM/DMI was only significantly decreased when cows 
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were fed 20% DDGS (Table 3) compared with control.  Even though cows fed 10% 

DDGS had decreased milk fat, DMI concomitantly decreased, resulting in no significant 

difference in FCM/DMI between the control (0%) and 10% treatments.  Prior researchers 

reported FCM/DMI ranging from 1.5 to 1.78 when cows were fed a traditional TMR 

(Devries et al., 2011; Hart et al., 2014; Maiga et al., 2011; Martinez et al., 2009; Wall et 

al., 2014), whereas in this study cows fed 0, 10, and 20% DDGS had a FCM/DMI of 

1.49, 1.45, and 1.23, respectively.  In this study, cows fed 0 and 10% DDGS performed 

similarly to previously published data, but cows fed 20% DDGS had a considerably 

lower FCM/DMI, likely because of the significant milk fat depression and increased DMI 

of those cows when compared with cows fed the control diet.       

  Another measure of feed efficiency is the amount of caloric intake (represented by 

the net energy for lactation (NEL)) that is needed to produce one kg of ECM 

(ECM/NEL).  Feeding cows 20% DDGS resulted in the poorest utilization of available 

NEL, which was a direct result of the decreased milk fat production (Table 3).  

Finally, energetic efficiency (a ratio of the estimated caloric value of milk to the 

NEL of the feed) decreased significantly for cows fed 20% DDGS, meaning that more 

calories must be fed to produce one calorie of milk when cows are fed 20% DDGS than 

when they are fed 0 and 10% DDGS (Table 3).  As with ECM/NEL, the authors are not 

aware of a study to which a comparison can be made.  

Implications 

These results indicate that feeding DDGS at different concentrations had an 

inconsistent effect on DMI.  These results, however, do support our hypothesis that, 

under these experimental conditions, feeding 20% DDGS diets, but not 10% DDGS diets, 
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significantly decreases feed efficiency of lactating Holstein dairy cows in all metrics 

considered.  In addition, under these experimental conditions, feeding full-fat DDGS 

(13% fat) at both 10 and 20% concentrations resulted in significant milk fat depression, 

decreased 3.5% FCM and ECM yield, and increased lactose percentage.  Also, feeding of 

10% DDGS did not result in a loss of feed or protein efficiency but did result in a 

decrease of ECM and FCM because of significant decreases in milk fat production and 

percentage.  Feeding 20% DDGS with full-fat resulted in decreased performance in 

nearly every measure employed in this study.  Therefore, these data indicate that the 

limitations of feeding DDGS without inducing milk fat depression are complex and 

multifaceted, requiring consideration of oil content in addition to particle size and forage 

content when formulating rations.     
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Table 1. Feed formulations of three treatment diets, fed as a total mixed ration, containing 
different concentrations of dried distillers grains with solubles (DDGS)  
 

Treatment 

Ingredient, % DM 0% DDGS 10% DDGS 20% DDGS 

Corn silage 31.4 27.9 22.7 

Alfalfa hay 19.5 19.5 19.5 

Soybean meal (48%) 1.8 0.0 0.0 

Soy Plus* 4.2 1.3 1.4 

Cottonseed (whole) 8.6 8.6 8.6 

Finely ground corn 28.1 26.3 23.0 

DDGS 0.0 10.0 20.0 

Supercharger II®† 0.9 0.9 - 

Limestone 0.8 0.8 1.5 

Blood meal 0.6 0.6 - 

Sodium bicarbonate 0.6 0.6 0.6 

Rock salt 0.5 0.5 0.5 

Animal fat - - 0.4 

Urea 0.4 0.4 - 

Pork meat and bone meal 0.3 0.3 - 

Monocalcium phosphate 
21% 

0.2 0.2 - 

Magnesium oxide 0.2 0.2 0.2 

Metasmart®‡ 0.1 0.1 0.1 

Dynamate®§ 0.1 0.1 - 

Dairy balancer II®# 0.1 0.1 0.1 

Monensin 90® 0.01 0.01 0.01 

Forages 50.9 47.5 42.3 

Concentrates 49.1 52.5 57.7 

*West Central Cooperative, Ralston, IA. 
†Fat supplement (Origo, New Ulm, MN)  
‡Methionine supplement (Adisseo USA Incorporated, Anpharetta, GA) 
§Vitamin and trace mineral premix (Consumer’s Supply Distributing Company, Sioux 
City, IA)  
#Vitamin and trace mineral premix (Nutritional Professionals Incorporated, Hortonville, 
WI))   
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Table 2. Proximate analyses of dried distillers grains with solubles 
(DDGS) and pooled total mixed rations 

  Total mixed rations* 

Component DDGS 0% 10% 20% 

Moisture, % 9.56 43.8 41.4 37.1 

Dry matter (DM), % 90.44 56.2 58.7 62.9 

Crude protein (CP), % 32.55 16.6 17.1 16.9 
ADF, %† 17.1 20.4 23.7 21.8 

aNDF w/Na2SO3, %‡ N/A 30.6 32.4 28.8 

Lignin (sulfuric acid), % 4.4% 4.1 5.6 5.6 

Lignin % of NDF, % 19.5 13.3 17.4 19.6 

AD-ICP§ % of CP, % 19.0 10.9 14.0 18.9 

AD-ICP % of DM, %  6.1 1.8 2.4 3.2 

ND-ICP# % of CP est. w/o Na2SO3, % N/A 16.0 16.0 16.0 

ND-ICP % of DM est. w/o Na2SO3, % N/A 2.7 2.8 2.8 

Fat, %‖ 13.5 5.6 6.9 7.6 

Ash, %  5.1 6.9 6.7 6.9 

Calcium, % 0.1 1.0 0.9 1.0 

Phosphorus, % 1.0 0.4 0.4 0.4 

Magnesium, % 0.4 0.3 0.3 0.3 

Potassium, % 1.1 1.2 1.2 1.1 

Sulfur, % 0.9 0.2 0.3 0.4 

Sodium, % 0.2 0.4 0.4 0.5 

Chloride, %  0.2 0.6 0.6 0.6 

T. D. N ** – OARDC††,% 85.2 71.5 69.1 69.8 

N. F. C. ‡‡  26.3 41.0 37.8 40.7 

NEL §§ - OARDC, Mcal/kg 2.0 1.6 1.6 1.6 

DCAD##, mEq/100 g -5.3 3.9 2.8 1.8 

*Data are expressed as the means of 6 composite samples as a percentage of dry matter. 

†Acid detergent fiber. 

‡Amylase-treated neutral detergent fiber with sodium sulfite. 

§Acid-detergent insoluble crude protein. 

#Neutral-detergent insoluble crude protein.  

‖Total mixed rations determined by ether extract and DDGS determined by petroleum ether 
extract. 

**Total digestible nutrients. 

††A summative calculation based on an Ohio Agricultural Research and Development 
Center method (an approach for energy evaluation). 

‡‡Non-fiber carbohydrate. 

§§Net energy for lactation. 
##Dietary cation anion difference (DCAD) = (Na+ + K+) - (Cl- + S2-). 



www.manaraa.com

 

 
 

 Table 3. Effects of feeding dried distillers grains with solubles (DDGS) at 0, 10, and 20% dietary inclusion (DM) 
on dry matter intake (DMI), milk production and composition, and feed efficiency expressed as grand mean ± the 
standard error of the mean  

 Treatment    

Item 0% DDGS 10% DDGS 20% DDGS  SEM P - Value 

DMI (kg/d) 25.33b 24.14a 26.30c  0.47 <0.0001 
PUFA intake (kg/d) 0.70a 0.85b 1.08c  0.02 <0.0001 
Milk yield (kg/d) 39.78b 39.24ab 38.98a  1.51 0.0125 
3.5% FCM yield (kg/d)* 36.87c 33.67b 31.72a  1.28 <0.0001 
ECM yield (kg/d)† 41.54c 38.75b 37.08a  1.40 <0.0001 
Fat (%) 3.58c 3.09b 2.80a  0.13 <0.0001 
Fat yield (kg/d) 1.40c 1.20b 1.08a  0.06 <0.0001 
Protein (%) 3.68a 3.70b 3.72c  0.02 <0.0001 
Protein yield (kg/d) 1.45 1.45 1.45  0.05 0.8251 
Lactose (%) 5.12a 5.20b 5.24c  0.03 <0.0001 
Lactose yield (kg/d) 2.03 2.03 2.03  0.07 0.9176 
Protein efficiency (%)‡ 35.42b 36.31b 32.93a  0.01 <0.0001 
3.5% FCM/DMI 1.49b 1.45b 1.23a  0.05 <0.0001 
ECM/DMI 1.68b 1.67b 1.43a  0.06 <0.0001 
kg ECM per NEL§ intake (Mcal) 1.03b 1.05b 0.90a  0.04 <0.0001 
Energetic efficiency (%)# 0.66b 0.67b 0.57a  0.02 <0.0001 
 a, b, c Items within a row with differing superscripts differ (P < 0.05). 

*3.5% Fat corrected milk yield = [0.4 × Milk yield (kg/d)] + [15 × milkfat yield (kg/d)]. 
†Energy corrected milk = [0.327 × milk yield (kg/day)] + [12.95 × milkfat yield (kg/d)] + [7.2 × protein yield 
(kg/d)]. 
‡Protein efficiency = [crude protein in milk (kg/day)]/[crude protein intake (kg/day)]. 
§Net energy for lactation (NEL) calculation performed by using the summative equation described in NRC 
Nutritional Requirements of Dairy Cattle (2001). 
#Energetic efficiency = [estimated gross energy in milk (mcal)]/[NEL caloric intake (Mcal)], estimated gross energy 
of milk (Mcal) =  [4 × milk protein (kg/day)] + [4 × milk lactose (kg/day)] + [9 × milk fat (kg/day)]. 
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Table 4. Fatty acid composition of three treatment pooled total mixed rations containing 
differing concentrations of dried distillers grains with solubles (DDGS)  
 

Treatment*    

Fatty acid, wt %† 0% DDGS 10% DDGS 20% DDGS  SEM P - Value 

C12:0 + C14:0 0.39b 0.36ab 0.31a  0.02 0.0274 

C14:1 1.28b 0.90ab 0.57a  0.11 0.0036 

C16:0 20.10b 19.09b 17.61a  0.33 0.0010 

C16:1 0.66 0.64 0.45  0.07 0.1336 

C17:0 0.15 0.15 0.16  0.04 0.9908 

C18:0 3.03c 2.49b 2.08a  0.07 <0.0001 

C18:1 25.00 24.52 24.36  0.29 0.3163 

C18:2 44.76a 47.48b 50.64c  0.32 <0.0001 

C18:3 4.04b 3.68b 3.13a  0.11 0.0006 

C19:0 0.00 0.00 0.00  ND ND 

C20:0 0.08 0.19 0.16  0.03 0.1461 

C20:1 0.22 0.24 0.22  0.03 0.9239 

C20:2 0.04 0.02 0.07  0.20 0.4019 

C20:3 0.08 0.10 0.08  0.01 0.4019 

C20:4 0.00 0.00 0.00  ND ND 

C22:1 0.02 0.02 0.01  0.003 0.4019 

C24:0 0.04 0.04 0.04  0.003 0.4019 

C24:1 0.00 0.00 0.00  ND ND 

Other 0.01 0.01 0.07  0.01 0.0414 

SFA 23.79c 22.29b 20.32a  0.28 <0.0001 

MUFA 27.17b 26.31ab 25.62a  0.34 0.0292 

PUFA 48.92a 51.26b 53.89c  0.25 <0.0001 

UFA‡ 76.08a 77.57b 79.51c  0.28 <0.0001 

UFA/SFA 3.20a 3.49b 3.93c  0.06 <0.0001 

a,b,cMeans within a row with different superscripts differ (P < 0.05). 
*Expressed as mean of six samples.  
†Expressed as number of carbons: number of double bonds. 
‡Unsaturated fatty acids. 
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CHAPTER 4 

FEEDING TWENTY PERCENT REDUCED-FAT DRIED DISTILLERS GRAINS 

WITH SOLUBLES TO LACTATING HOLSTEIN DAIRY COWS DOES NOT 

AFFECT FEED EFFICIENCY BUT MAY IMPROVE PROTEIN UTILIZATION 

E. D. Testroet, M. R. O’Neil, S. Lei, C. Duran Tromellini, A. L. Mueller, H. A. Ramirez-

Ramirez, S. Clark, and * D. C. Beitz 

A manuscript to be submitted to Journal of Dairy Science 

 

Abstract 

Thirty-five multiparous lactating Holstein dairy cows (body weight 680 ± 11 kg, 52.25 ± 

27.34 DIM) were fed one of two dietary treatments in a 2 × 2 crossover design. Cows 

were assigned randomly to treatment sequence one or two and were housed in a 48-cow 

free stall pen equipped with Calan gates to record individual feed intake. Treatment diet 

one (control) was a standard corn/corn silage/hay diet supplemented with Soy-Plus.  Diet 

two was the same base ration but 20% (DM basis) reduced-fat dried distillers grains with 

solubles (RF-DDGS) were included in place of Soy Plus.  The RF-DDGS diet was 

additionally supplemented with ruminally-protected lysine to ensure diets contained 

similar concentrations of limiting amino acids. Diets were formulated to be isoenergetic 

and isonitrogenous and were fed to allow for approximately 10% refusal rate. Cows were 

allowed ad libitum access to feed and water, fed twice daily, and milked three times 

daily.  

There were no significant treatment effects on milk composition with the exception of 

increased protein percentage (3.11 vs 3.01 %, RF-DDGS vs control, respectively) and 
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decreased milk urea nitrogen (12.99 vs 14.18 mg/dL, RF-DDGS vs control, respectively). 

Additionally, DMI and milk yield (including ECM and FCM yields) were unaffected by 

treatment.  Consequently, there was no treatment effect on any measures of feed 

efficiency. Finally, there were no significant effects on body weight change, rumen fluid 

pH, or blood NEFA and glucose.  

 

These results indicate that RF-DDGS can be utilized in the rations of lactating Holstein 

dairy cows at a 20% inclusion rate (DM basis) without negatively influencing production 

parameters or the physiology of the cow when ruminally protected lysine is 

supplemented.  Additionally, cows fed RF-DDGS produced milk with greater protein 

percentage and decreased milk urea nitrogen, indicating that protein utilization may be 

improved when cows are fed RF-DDGS with lysine. 

 

Key words: milk fat, protein utilization, co-product 

Introduction 

Feeding of traditional, or full-fat, corn dried and wet distillers grains with solubles (DGs) 

to ruminant animals has been studied exhaustively and have been reviewed thoroughly 

(Schingoethe et al., 2009; Klopfenstein et al., 2008). However, results are mixed with 

some studies reporting no changes in production parameters (Anderson et al., 2006; 

Sasikala-Appukuttan et al., 2008) and others reporting altered milk composition, either 

positively or negatively, or yield when DGs are fed (Kleinschmit et al., 2006; Abdelqader 

et al., 2009). One problem with feeding traditional DG is that they contain approximately 

13% fat, which is composed of mainly unsaturated fatty acids. This problem is two-fold 
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because inclusion of DGs can result in diets that contain concentrations of fat that exceed 

five percent, which can inhibit fiber digestion (Zinn, 1989).  The second problem that can 

arise relates to the high concentration of unsaturated fatty acids in DGs that remain after 

the fermentation process.  Unsaturated fatty acids are toxic to rumen microbes (Maia et 

al., 2007) and undergo biohydrogenation in the rumen because the rumen is a highly 

reducing environment. Incomplete biohydrogenation, however, can result in the 

production of bioactive forms of conjugated linoleic acid (trans-10 cis-12 CLA) which 

act to inhibit de novo lipogenesis in the mammary (Baumgard et al., 2001).  Both 

aforementioned problems can result in milk fat depression, characterized by decreased 

milk fat without concomitant alteration in concentrations of other milk components 

(Bauman and Griinari, 2001). However, with the relatively recent improvements in oil 

extraction from DGs (Majoni et al., 2011) and the economic value of the corn oil 

extracted, it is highly unlikely that traditional DGs will be available in the future. Indeed, 

personal conversations with regional farmers have indicated that reduced-fat dried 

distillers grains with solubles (RF-DDGS; ~6% fat) are typically the only form of DGs 

available. While the reduced energy content of RF-DDGS is a concern for producers of 

monogastric animals, it could be an advantage for dairy producers by allowing them to 

include greater concentrations of this typically economical protein source.  Research has 

shown positive results when RF-DDGS are included in the rations of lactating dairy cows 

(Mjoun et al., 2010; Castillo-Lopez et. al., 2014; Ramirez-Ramirez et al., 2016). With the 

ever-increasing prevalence in the market place of RF-DDGS and the relatively recent 

emergence of RF-DDGS as a commonly available feedstuff, further research is 

warranted. We therefore hypothesized that lactating Holstein dairy cows could effectively 
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be fed RF-DDGS at a 20% (DM) inclusion rate in place of Soy Plus without negatively 

influencing feed efficiency or milk composition; Therefore, our objectives were to test 

the effects of feeding RF-DDGS to lactating Holstein dairy cows on both milk 

composition and feed efficiency 

Materials and methods 

Animals and diets 

All procedures were approved by the Iowa State University Animal Care and Use 

Committee (IACUC).  Thirty-five multiparous mid-lactation Holstein dairy cows were 

assigned to one of two dietary treatment groups in a 2 × 2 crossover design.  Each 

experimental period lasted 35 days with the first 14-days used as an acclimation period. 

Rations were formulated to meet NRC requirements, to be isonitrogenous and 

isoenergetic (Tables 1 and 2), and to contain similar intestinally available amino acid 

concentrations.  Ration one (control) was a standard corn/corn silage/hay based ration 

supplemented with soybean meal as a protein source. Ration two was formulated by 

using the same base ration as the control but with 20% of the dry matter being a RF-

DDGS (Poet Biorefining, Jewell, IA) containing approximately 6.0% fat in place of 

SoyPlus (Dairy Nutrition Plus, Des Moines, IA) (Table 1).  The RF-DDGS ration was 

supplemented with ruminally-protected lysine to make diets similar in available limiting 

amino acids (Table 1). Cows were fed individually by using Calan gates (American 

Calan, Northwood, New Hampshire), allowing for measurement of individual feed 

intake.  Cows were housed at the Iowa State University Dairy Farm (Ames, IA) together 

in a 48-cow, free-stall pen and individually fed twice daily (0800 h and 1600 h) to allow 

for approximately 10% refusal.  Feed ingredients in a TMR were mixed by using a Patz 
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V615 mixer (Patz Corporation, Pound, WI).  Cows were allowed ad libitum access to 

food and water, except during their three daily milkings (8 h apart).  Initially, cows were 

allowed to adapt to using the Calan gates (American Calan Inc, Northwood, NH) before 

start of the acclimation period. Additionally, individual milk production was recorded 

daily by using a Boumatic milking system (Boumatic LLC, Madison, WI).   

Sample collection and analyses 

Because, the first 14-days of each experimental period were an acclimation period those 

data were excluded from analyses. Feed samples were collected three times per 

experimental period and  proximate analyses were done by wet chemistry (Dairylands 

Lab, Arcadia, WI).  Fiber (acid detergent) was quantified by AOAC Official Method 

973.18 (1996) and lignin by AOAC Official Method 973.18, ether extract was 

determined by using AOAC Official Method 945.16 and AOAC Official Method 920.39, 

feed fatty acids were quantified by using the method described by Sukhija and Palmquist 

(1988), nitrogen was quantified by using AOAC Official Method 990.0, minerals were 

determined by ICP-MS by using AOAC Official Method 985.0 and AOAC Official 

Method 2011.14, NDF was determined as described by Mertens (2002), AD-ICP was 

determined by using AOAC Official Method 973.18 and AOAC Official Method 990.03, 

ash was determined by AOAC Official Method 942.05, and finally dry matter was 

determined by using NFTA Method 2.1.4. After the 14-day acclimation period, 

individual milk samples were collected weekly for all three milkings to represent a 24-

hour lactation period.  Individual milk samples (three from each test day) then were sent 

for proximate analyses and assay of milk urea nitrogen and somatic cell count (Performed 

by using official methods at Dairy Lab Services, Dubuque, IA).  
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Blood samples were collected during the final week of each period by jugular 

venipuncture and placed into lithium heparinized vacutainers for NEFA quantification 

and into fluoridated vacutainers for blood glucose analysis (Becton, Dickson, and 

Company, Franklin Lakes, NJ).  Blood glucose then was assayed by following the 

manufacturer’s protocols (Wako Autokit Glucose, Wako Diagnostics, Richmond, VA). 

Blood NEFA were quantified following manufacture protocol (Wako HR Series NEFA-

HR, Wako Diagnostics, Richmond, VA). Rumen fluid was collected via esophageal tube 

approximately four-hours post feeding when maximal VFA production was most likely to 

occur. The first few hundred milliliters of rumen fluid were discarded to limit salivary 

contamination.  The next volume of rumen fluid then was strained through cheese cloth 

and frozen at -20°C. Rumen pH was measured immediately on-farm after collection.  

Statistical analyses 

Milk components, yield, and performance metrics were analyzed as a 2 × 2 crossover 

design.  Data were analyzed by using the mixed procedure of SAS version 9.4 (Cary, 

NC).  The model included the fixed effects of treatment, treatment sequence, and period 

and the random effect was cow(group).  Means with significant treatment effects were 

separated by using LSMEANS with the PDIFF option.  Feed fatty acids and feed 

proximate analysis results were analyzed by using the MIXED procedure of SAS with the 

fixed effect of treatment.
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Results and discussion 

Ration formulations are reported in Table 1. As designed, diets were isoenergetic and 

isonitrogenous (Table 2).  Additionally, total digestible nutrients (TDN) did not vary 

between diets. Feed fatty acids are reported in Table 3, and, as expected, the RF-DDGS 

diet contained greater concentrations of total unsaturated fatty acids because corn oil is 

92% unsaturated fatty acids (Ramos et al., 2009).  However, significant differences in 

phosphorus, sulfur, and calcium resulted in a significantly lower dietary cation anion 

difference (DCAD) in RF-DDGS rations. Previous studies have indicated that increased 

DCAD values can increase milk fat percentage (Wildman et al., 2007; Hu et al., 2007; 

Harrison et al., 2012); this result, however, was not seen in our study which is consistent 

with results reported by Erdman et al. (2011) (Table 4). 

 

Dry matter intake (DMI) did not significantly vary between treatment groups, nor did 

milk yield, fat corrected milk yield (FCM), or energy-corrected milk yield (ECM) differ 

between treatment (Table 4) which is consistent with results of Paz and Kononoff (2014) 

and Ramirez-Ramirez et al. (2016). Additionally, milk fat percentage (consistent with 

Ramirez-Ramirez et al., 2016), total milk fat production, total milk protein production, 

lactose percentage and total lactose production were unaffected by treatment (Table 4) 

which is consistent with results of Paz and Kononoff (2014) and Mjoun et al. (2010). 

Milk protein percentage was, however, significantly increased, and milk urea nitrogen 

(MUN) was significantly decreased when cows were fed RF-DDGS (Table 4; consistent 

with Mjoun et al., 2010), indicating that protein utilization may be improved when cows 

are fed RF-DDGS when supplemented with rumen-protected lysine, which has been 



www.manaraa.com

66 
 

 
 

reported by Mjoun et al. (2010). Increased milk protein percentage when cows were fed 

RF-DDGS has been previously reported (Ramirez-Ramirez et al., 2016; Castillo-Lopez et 

al., 2014; and Mjoun et al., 2010). Additionally, all metrics of feed efficiency were 

unaffected, which is consistent with prior research that saw no change or improved feed 

efficiency when cows were fed RF-DDGS (Mjoun et al., 2010). 

 

No difference in body weight change was seen for either treatment group which was 

reported by Mjoun et al. (2010) as well (Table 5).  In addition, no difference in rumen pH 

was observed, which is consistent with results reported by Castillo-Lopez et al. (2014). In 

contrast with the results of Mjoun et al (2010), we saw no difference in NEFA 

concentration, which is likely because the cows used in that study were early lactation 

whereas ours were in mid-lactation. Finally, consistent with Mjoun et al. (2010), blood 

glucose concentrations were not different between treatments.   

 

Conclusions 

These results indicate that 20% RF-DDGS on a dry-matter basis can be effectively 

included in the rations of lactating dairy cows without any adverse effects on milk 

composition, feed efficiency, or measured blood markers of energy balance. These results 

indicate promising prospects for the utilization of RF-DDGS, which are often more 

economical than more expensive protein sources. Finally, consistent with previous 

research Mjoun et al. (2010), our results indicate that feeding RF-DDGS may lead to 

improved dietary protein utilization when compared with soybean-based protein. 
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Table 1. Formulations of control and reduced-fat dried distillers grains with solubles (RF-
DDGS) rations.  
 Treatment 
Ingredient, % dry matter Control 20% RF-DDGS 
Corn silage 35.13 31.57 
Alfalfa hay 23.09 20.74 
Whole cotton seed 8.03 7.21 
Ground corn 14.41 15.13 
RF-DDGS 0.00 19.45 
Soy Plus1 13.51 0.54 
Quality Liquid Feeds2 3.81 3.42 
USA Lysine3 0.00 0.11 
Vitamin and mineral premix 3.81 3.42 

1 Dairy Nutrition Plus, Des Moines, IA. 
2 Quality Liquid Feeds, Dunlap, IA. Custom vitamin and mineral supplement. 
3 Kemin Industries, Des Moines, IA
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Table 2. Analysis of control and reduced-fat dried distillers grains with solubles (RF-DDGS) rations. 
 Treatment   
Item Control 20% RF-DDGS SEM P-Values 
Moisture, % 43.10 40.83 0.956 0.1246 
Dry Matter, % 56.90 59.17 0.956 0.1246 
Crude Protein, % DM 18.09 17.86 0.213 0.4464 
ADF, % DM 21.37 20.52 0.678 0.3973 
aNDF, % DM 28.78 29.35 0.757 0.6019 
aNDF, % OM 27.93 28.20 0.776 0.8071 
Lignin, % DM 4.01 4.01 0.181 0.9848 
Lignin, % NDF  14.34 14.22 0.387 0.8356 
AD-ICP, % DM 0.93 1.02 0.070 0.2275 
ND-ICP, % DM 2.90 2.90 0.033 0.4344 
Fat, % DM 4.80 5.21 0.130 0.0520 
Ash, % DM 8.60 8.20 0.170 0.1171 
Calcium, % DM 1.16 0.94 0.052 0.0144 
Phosphorus, % DM 0.34 0.44 0.013 0.0003 
Magnesium, % DM 0.26 0.24 0.016 0.5672 
Potassium, % DM 1.96 1.81 0.051 0.0685 
Sulfur, %DM 0.25 0.36 0.010 <0.0001 
Sodium, % DM 0.56 0.51 0.016 0.0704 
Chloride, % DM 0.63 0.63 0.022 0.8733 
DCAD, mEq/100g 40.81 27.89 1.766 0.0004 
TDN, 1 × %DM 71.56 72.09 0.505 0.4808 
NEL, Mcal/kg 1.64 1.65 0.012 0.4788 
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Table 3. Feed fatty acid composition.  
 Treatment   

Fatty acid,  wt% Control RF-DDGS1 SEM P-Value 
C12:0, C14:0 0.30 0.23 0.085 0.6107 
C14:1 0.00 0.00 NA NA 
C16:0 20.27 19.20 0.299 0.0293 
C16:1 0.37 0.28 0.017 0.0058 
C17:0 0.00 0.00 NA NA 
C18:0 3.22 2.68 0.080 0.0005 
C18:1 18.68 20.55 0.209 <0.0001 
C18:2 50.02 51.43 0.265 0.0037 
C18:3 5.71 4.21 0.147 <0.0001 
C19:0, C20:0 0.58 0.60 0.012 0.2215 
C20:1 0.27 0.30 0.008 0.0071 
C20:2, C20:3 0.00 0.00 NA NA 
C20:4 0.00 0.00 NA NA 
C22:1 0.00 0.00 NA NA 
C22:6 0.00 0.00 NA NA 
C24:0 0.00 0.00 NA NA 
C24:1 0.00 0.00 NA NA 
tUFA2 75.04 76.77 0.320 0.0034 
MUFA 19.31 21.14 0.200 <0.0001 
PUFA 55.73 55.63 0.252 0.7985 

1Reduced-fat dried distillers grains with solubles 
2Total unsaturated fatty acids 
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Table 4. Effects of feeding RF-DDGS to lactating Holstein dairy cows on milk components and yield. 
 Treatment   

Item Control RF-DDGS SEM P-Value 
Dry matter intake, kg/day 20.69 20.89 0.538 0.200 
Milk yield, kg/day 35.66 35.39 0.978 0.329 
FCM1 36.27 35.78 0.889 0.105 
ECM2 36.43 36.30 0.887 0.663 
Milk fat, kg/day 1.27 1.25 0.043 0.416 
Milk fat, % 3.65 3.61 0.096 0.517 
Milk protein, kg/day 1.05 1.08 0.032 0.204 
Milk protein, % 3.01 3.11 0.051 0.002 
Lactose, kg/day 1.63 1.62 0.057 0.884 
Lactose, % 4.62 4.64 0.050 0.819 
Milk total solids, % 12.19 12.28 0.167 0.478 
Somatic cell count 232.57 287.22 168.84 0.718 
Milk urea nitrogen, mg/dL 14.18 12.99 0.285 <0.0001 
Feed efficiency, kg milk/kg DMI 1.78 1.75 0.062 0.168 
FCM efficiency, kg FCM/kg DMI 1.81 1.77 0.056 0.110 
ECM efficiency, kg ECM/kg DMI 1.82 1.80 0.056 0.351 
1Fat-corrected milk = (0.432×Milk)+(16.23×Milk Fat) 
2Energy-corrected milk = (0.327×Milk)+(12.95×Milk Fat)+(7.65×Milk Protein) 
 

74 



www.manaraa.com

75 
 

 
 

Table 5. Effects of feeding RF-DDGS to dairy cows on body weight, rumen fluid pH, and 
blood components. 
 Treatment   

Item Control RF-DDGS SEM P-Value 
Body weight change, kg +12.19 +17.33 2.43 0.139 
Rumen fluid pH 6.55 6.50 0.057 0.365 
Blood NEFA, μeq/L 164.54 159.53 6.10 0.508 
Blood glucose, mg/dL 53.08 54.85 1.24 0.319 
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CHAPTER 5 

DRIED DISTILLERS GRAINS WITH SOLUBLES AFFECTS COMPOSITION 

BUT NOT OXIDATIVE STABILITY OF MILK 

E. D. Testroet, G. Li, D. C. Beitz, and S. Clark 

Re-formatted from publication in Journal of Dairy Science 98:2908-2919 

 

Interpretive summary: 

Eric D. Testroet 

Feeding dried distillers grains with solubles (DDGS) to dairy cows increases the 

concentration of unsaturated fatty acids (UFA) in milk, potentially making milk more 

susceptible to oxidation.  Despite increased UFA, decreased milk fat, and increased 

protein and SNF, feeding DDGS did not result in practically significant development of 

off-flavors in milk stored at 4 degrees Celsius for up to seven days.  Feeding DDGS 

resulted in production of milk with off-flavor characteristics that were low and likely of 

no concern to consumers.   
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Abstract 

Feeding lactating dairy cows dried distillers grains with solubles (DDGS) 

increases the concentration of unsaturated fatty acids in the milk from those cows, 

potentially leading to increased susceptibility to development of off-flavors.  Feeding 

DDGS has been loosely implicated to be a cause of development of spontaneous 

oxidative off-flavor in milk.  We hypothesized that increased feeding of DDGS would 

accelerate development of off-flavors and that fortification with vitamin E (0.06% w/w) 

or vitamin C (0.06% w/w) would prevent spontaneous oxidative off-flavors.  The 

objective of this research was to determine the effects of feeding DDGS to lactating dairy 

cows on several parameters of milk quality as determined by both chemical and sensory 

evaluations.  Twenty-four healthy mid-lactation Holstein dairy cows were fed total mixed 

rations containing DDGS (0%, 10%, or 25% dry matter).  Cows were blocked by parity 

and randomly assigned to one of two groups (12 cows each).  Each group received all 

three treatments in a three-period Youden square design so that each cow served as her 

own control.   Samples of milk from individual cows for proximate analysis and pooled 

milk for pasteurization and sensory analysis were collected on days 14, 21, and 28 of 

each experimental period.  Pooled milk was assayed for peroxides and free fatty acids 

and evaluated by a trained sensory panel for the presence of seven off-flavors common to 

milk on days 1, 3, and 7.    Feeding 25% DDGS caused a significant decrease in daily 

milk yield (P < 0.0001).  Increased dietary inclusion of DDGS also caused a concomitant 

decrease in percentage of milk fat and increase in percentages of both solids non-fat and 

protein (P < 0.0001).  Milk peroxides and free-fatty acids were almost all below the 

detection limit, and the few exceptions were not found in replicated analyses.  Sensory 
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analysis revealed off-flavors only in milk from cows fed 0% DDGS when that milk was 

stored for seven days and when milk from cows fed 25% DDGS was fortified with 0.06% 

w/w vitamin C (P < 0.05).  Those few detected off-flavor scores were less than 1.5 cm on 

a 15-cm line scale, indicating that the differences are not practically significant.  Peroxide 

values support the findings by the sensory panel that both feeding DDGS at 10 and 25% 

and vitamin E and vitamin C fortification did not practically change the oxidative 

stability of milk. These results, taken together, indicate that feeding DDGS under our 

experimental conditions modified milk composition, but did not contribute to the 

development of off-flavors in milk.   

 

KEY WORDS 

oxidation, flavor, sensory, cow, milk fat depression
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Introduction 

In the early spring of 2009 and 2010, recurring consumer complaints about milk 

“going bad” in the Midwest drew the attention of farmers, processors, grocers, a major 

dairy cooperative, and educators. Experienced milk evaluators from those groups 

determined the primary off-flavor of the rejected milk to be “oxidized”.  Raw milk, 

initially good, “spontaneously” became oxidized within five days of milk collection.  

Spontaneous oxidation (SO) has been classified as oxidation that spontaneously happens 

within 48 hours of milking (Dunkley and Franke, 1967), and spontaneous oxidized flavor 

(SOF) refers to those flavors associated with SO. Investigations (i.e., grocery tours, plant 

tours, milk analyses, and feed analyses) led to the determination that SO and SOF 

originated from the cow rather than from other sources of oxidation (e.g., metal ions, 

light).  Several factors have been implicated as the probable cause of SOF, but it is 

suspected that one primary source of SOF is from the diet of the cow (Government of 

Manitoba, Agriculture, Food, and Rural Initiatives, 2008).  

Previous studies have found that feeding dried distillers grains with solubles 

(DDGS), a co-product of ethanol production, to dairy cows increases unsaturated fatty 

acids in milk (Schingoethe et al., 1999; Leonardi et al., 2005; Anderson et al., 2006).  

Because the corn oil in DDGS is typically more than 60% linoleic acid (C18:2), feeding it 

should be expected to contribute to an increase in unsaturated fatty acids in milk 

(Schingoethe et al., 2009), despite the extensive biohydrogenation by rumen microbes 

(Jensen et al., 1991). Hence, it is reasonable to suspect that increased concentrations of 

unsaturated fatty acids in milk could lead to the development of oxidation in milk from 

cows fed DDGS (Fig. 1). In this study, we investigated how feeding lactating dairy cows 
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DDGS affects milk oxidative stability by testing milk with sensory and chemical tests. 

Much previous research has focused on the impact of feeding DDGS on production 

parameters (e.g., DMI, volatile ruminal short chain fatty acids, feed efficiency, milk 

production, milk and milk fat composition) (Schingoethe et al., 1999; Anderson et al., 

2006; Schingoethe et al., 2009), but information is lacking in regards to milk sensory 

quality and/or susceptibility to oxidation from milk produced by cows fed DDGS. To our 

knowledge, this is the only study that evaluated the effect of feeding DDGS to lactating 

dairy cows on the milk quality as evaluated by a trained descriptive analysis panel as well 

as chemical analyses. We hypothesized that (1) greater DDGS inclusion in the ration of 

lactating dairy cows would contribute to the development of SOF in milk and that (2) 

vitamin E and vitamin C fortification of milk would limit development of SOF in milk. 

 

Materials and methods 

Experimental design, milk collection, and processing 

All experimental protocols involving animal and human subjects were approved 

by the Iowa State University Institutional Animal Care and Use Committee and 

Institutional Review Board, respectively.  Human subjects reviewed and signed an 

informed consent form prior to beginning the research.  Animal protocols were 

additionally reviewed and approved by the Iowa State University Dairy Users Group 

prior to initiation.  Two groups of 12 mid-lactation primaparous and multiparous Holstein 

dairy cows were fed diets containing three dietary concentrations of DDGS in a Youden 

square design. The three diets were formulated to be isoenergetic with 0% DDGS, 10% 

DDGS, and 25% DDGS as dietary DM (Table 1). Group 1 received the 0%, 10%, and 
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25% DDGS diet in periods 1, 2, and 3, respectively, whereas group 2 received 10%, 25%, 

and 0% in periods 1, 2, and 3, respectively. Thus, each cow received all three diets in 

different periods and served as her own control.  The DDGS were produced from corn-

based ethanol production by Lincolnway Energy LLC (Nevada, IA).  To balance the 

energetic content of each diet the rations had to be altered considerably from the 0% 

DDGS diet to the 25% DDGS diet.  Although the compositions of the treatment diets 

vary, a “no DDGS” diet was needed to ensure that these groups of cows did not produce 

milk that developed oxidized off-flavors on a typical lactation ration, thus allowing us to 

examine the effects of feeding DDGS. Nutritional compositions, as determined by near-

infrared spectroscopy (NIR), of the rations and DDGS are presented in Table 2 

(Dairyland Laboratories, Inc., Arcadia, WI).  Initially, cows were allowed to acclimate to 

the diet for seven days.  For the remainder of the experiment, the cows transitioned 

directly to the next treatment with the first 14 days being excluded from sampling and 

analysis to minimize carry-over effects.  Each experimental period lasted for 28 days. 

During each of three experimental periods, milk was collected from the morning 

milking 14, 21, and 28 days after the start of the period. On the same collection days, 

during the third milking of the day, milk was automatically sampled from each individual 

cow (Boumatic, Madison, WI) for proximate analysis, to represent one complete milking. 

On each collection day (first milking of the day), milk was collected from each treatment 

group and pooled within each treatment group. The pooled milk then was divided for 

three fortification treatments: no fortification (control), 0.06% (w/w) vitamin E 

fortification (tocopherol acetate)(Dairy House, Fenton, MO)), and 0.06% (w/w) vitamin 

C fortification (L-ascorbic acid, crystalline >98%) (Jianshan Pharmaceutical Co., LTD, 
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Jiansu, China). Vitamins were aseptically added to the raw milk.  All six of the milks 

(three fortification milks from two groups) were high-temperature, short-time (HTST), 

continuous pasteurized at 74°C for 24 seconds with a UHT/HTST Lab Electric Model 

25HV Hybrid pasteurizer (MicroThermics®, Raleigh, NC).  Vitamin C has been shown 

to be stable in broccoli for at least 15 minutes at 90°C (Munyaka et al., 2010), and 

therefore, should remain stable through the HTST pasteurization employed in this 

experiment. The pasteurized milks were collected in commercial translucent plastic 

gallon milk jugs purchased from Anderson Erickson Dairy (Des Moines, IA). All of the 

gallon milk samples were labeled with a unique random 3-digit identification code and 

put into black opaque plastic bags to block light during transportation and storage. Milks 

were analyzed for the sensory off-flavors described in Table 3 and analyzed chemically 

(described later) for oxidation products after one, three, and seven days of storage at 3°C 

without light exposure.  

Short-chain volatile fatty acid analysis of rumen fluid 

Rumen fluid was collected prior to the start of the first experimental period as 

well as on the 24th day of each experimental period via an esophageal tube.  The 

collected fluid was strained through cheesecloth to remove particulate matter.  Sampling 

took place after the morning milking and an average of one hour after feeding.  Rumen 

fluid was frozen at -20°C until analysis.  Rumen fluids were thawed and then analyzed by 

using a Varian 3900 gas chromatograph (Varian Chromatography systems, Palo Alto, 

CA) equipped with a 30 m × 0.25 mm i.d. DB-FFAP column (Agilent Technologies, 

Santa Clara, CA) as described by Drewnoski et al. (2014). 
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Milk fatty acid composition 

Total lipids were extracted from individual milk samples (5 mL) as described by 

Lin et al. (1995), dried under N2 gas, and re-suspended in 5 mL chloroform (HPLC grade, 

Fisher Scientific, Fairlawn, NJ).  Milk lipids in chloroform were stored frozen at -20°C 

until analysis.  Lipids in chloroform were dried under N2 gas, followed by the addition of 

650 µL of re-distilled 1-butanol (ACS grade, Fisher Scientific, Fairlawn, NJ) and 100 µL 

of acetyl chloride (< 99% pure, Acros Organics, NJ ) while vortexing.  Samples were 

purged with N2 gas and heated on a heating block at 60°C for 30 min.  Samples then were 

cooled to room temperature, and 5 mL of 4% w/v K2CO3 and 1.5 mL (ACS grade, Fisher 

Scientific, Fairlawn, NJ) of hexane (HPLC grade, Fisher Scientific, Fairlawn, NJ) were 

added.  Next, samples were centrifuged for 5 min at 1380 x g (Centrific model 228, 

Fisher Scientific, Fairlawn, NJ).  Following centrifugation, the hexane layer was 

transferred to a new tube and washed with 5 mL distilled H2O while vortexing.  Samples 

then were re-centrifuged and washed three additional times.  Butyl esters were analyzed 

on a Hewlett-Packard 6890 (Avondale, PA) gas chromatograph equipped with a flame 

ionization detector, a 30-meter Supelco 2330 fused silica capillary column with a 0.25 

mm i.d., 0.2 µm film thickness (Supelco, Bellefonte, PA), and a 3396A integrator.  The 

oven and injector of the chromatograph were held at 250°C with the column at an initial 

temperature of 50°C with a hold time of 1.44 minutes, followed by a 5°C per minute 

ramp to 225°C.  Commercially available external standards were used to identify peaks 

by retention time (GLC-74 and GLC-79, Nu-Chek Prep, Elysian, MN).  Pure C5:0, C11:0, 

and C19:0 (Sigma-Aldrich, St. Louis, MO) were used as internal standards to calculate 
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response factors.  C5:0 was utilized to apply correction factors to fatty acids concentrations 

of C4:0-C8:0, C11:0 for C10:0-C14:0, and C19:0 for fatty acids longer than C14:0.   

Milk composition 

Individual milk samples (30 to 40 mL at 22 ± 2°C) were analyzed for percent fat, 

SNF, and protein content by using the LactiCheckTM-01 RapiRead Milk Analyzer (Page 

& Pedersen Intl. Ltd., Hopkinton, MA).  Fat %, SNF %, and protein % were measured in 

duplicate.  

Sensory evaluation – descriptive analysis 

Fourteen milk consumers over the age of 18, from Iowa State University, served 

as trained sensory panelists. Ten people were selected as the official panelists, and four 

served as backup panelists for the study in case of absence. The panelists received a total 

of eight hrs of training, which consisted of two one-hour training sessions per week over 

a four-week period. Two additional one-hour review sessions were conducted between 

experimental periods. Seven common milk-related off-flavors (bitter, cooked, feed, flat, 

foreign, light-oxidized, and metal-oxidized) were chosen for sensory analysis.  Panelists 

were taught both “light” and “metal” oxidized off-flavors because SOF is very similar to 

these two off-flavors.  Attribute descriptions and training anchors are included in Table 3.  

The panelists were trained to score the intensity of the off-flavors on a 15-cm line scale.   

A “slight” off-flavor score was considered a score around 3 cm on the 15 cm line scale; a 

“definite” score was considered a score around 7.5 cm; a “pronounced” score was 

considered a score near to 13 cm.  

During training, panelists were instructed to evaluate the milk with the following 

protocol: 1) pour milk samples into clean disposable 3 oz. plastic cups (Solo Cup 



www.manaraa.com

85 
 

 
 

Company, Lake Forest, IL) and fill about 1/4 to 1/3 of the cup (about 30-45 mL of 

sample), 2) immediately cover the cup with one hand while holding the cup with the 

other hand to protect the milk sample from light and trap aromas inside the cup, 3) gently 

swirl the milk sample and use the heat of the hands to warm up the milk to release 

volatile compounds for about 5 seconds, 4) take a deep sniff of the milk sample when 

removing the hand from the cup, 5) take a generous sip of the milk, swirl it around the 

mouth, noting the flavors and sensations, and expectorate. Panelists were encouraged to 

breathe in fresh air through the mouth and then exhale through the nose to enhance the 

aromas in the sample retronasally.  For the actual tasting sessions, the only difference in 

protocol was that panelists were seated in private booths, and immediately pre-poured 

samples were provided in 3 oz. cups labeled with randomly generated 3-digit numbers. 

During training, pasteurized-homogenized fresh whole milk, in paperboard 

packaging (Anderson Erickson Dairy, Inc., Des Moines, IA) from a local grocery store 

was presented to the panelists for representation of “no defect” milk. For the actual 

tasting sessions the only difference involved inclusion of freshly-delivered non-

homogenized whole milk (Hansen’s Farm Fresh Dairy, Hudson, IA) as the “no defect” 

milk because the treatment milks also were not homogenized.  Prior to serving, all gallon 

containers of milk were removed from the refrigerator, shielded from light, and left at 

room temperature for 30 minutes to take the chill off and enable mixing of cream layer.  

All gallon containers (one package per treatment per day) were inverted at least 5 times 

prior to pouring of individual samples into 3 oz cups for presentation to panelists. 

Sensory evaluations of milk samples were conducted and recorded by using 

Compusense® Five Release 5.4 (Compusense Inc.; Guelph, ON, CA) sensory software at 
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the Nutrition and Wellness Research Center Sensory Evaluation Unit at Iowa State 

University one day, three days and seven days after pasteurization. Each panelist had an 

individual booth (lit with incandescent bulb), laptop, and a unique registration code 

provided for evaluating milk samples.  The computerized ballot had 15-cm line scales for 

each off-flavor. During the evaluation, panelists were provided with tap water and 

unsalted crackers as palate cleansers. Each panelist received samples sequentially (9 in 

total), in a randomized order, for each evaluation session and evaluated at his or her own 

pace. Panelists were not allowed to change the score once they had finished evaluating a 

sample.  

Peroxide value and free fatty acid content of milk 

Oxidative stability of the milk was determined by measuring peroxide value (PV). 

Free fatty acid (FFA) content was measured to indirectly evaluate milk for bacterial 

contamination. Peroxide and FFA contents were measured by using the SafTestTM system 

(MP Biomedicals, Solon, OH) with the PeroxySafeTM STD kit and FaSafeTM STD kit 

(MP Biomedicals, Solon, OH). Milk from the same source as those samples evaluated by 

the sensory panel were used for SafTestTM analyses.  Milk analyses were conducted 

following the PeroxySafeTM STD kit protocol and FaSafeTM STD kit protocol (MP 

Biomedicals, Solon, OH). Peroxide value and FFA concentration were assayed in 

duplicate.  

Statistical analysis 

Twenty-four cows assigned to two groups of 12 cows each were used in the study; 

however, only 19 cows completed all three treatment periods because five were removed 

for illness (e.g., mastitis).  Thus, only 19 cows were included in the final data analysis.  
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The experimental design was a Youden square.  Groups were blocked by parity, and days 

in milk was made to be approximately equal.  All data analysis was performed in SAS 9.3 

(Cary, NC).  

Fat%, SNF%, and protein% of the milk from all three dietary treatments were 

analyzed by using a one-way ANOVA.  Sensory data analysis of the mean scores of each 

flavor attribute from 10 panelists (18 observations per treatment) was performed by using 

a MIXED model with five fixed effects (dietary treatment, collection day, fortification, 

storage day, experiment period, treatment × storage day, and treatment × fortification) 

and a random effect of group nested within period.  

Milk yield and fatty acid composition data were analyzed by using a MIXED 

model with repeated measures.  For the milk yield analysis, the fixed effects were 

treatment and parity, the covariate was DIM, group was included as a random effect to 

account for treatment sequence and pen variation, and the repeated statement included the 

subject cow nested within treatment × period.   

Data for volatile ruminal short-chain fatty acids (SCFA) were analyzed by using a 

MIXED model that included the fixed effects parity and treatment and the covariate days 

in milk as well as the random effects of cow nested within period and group.  

All means were separated by the least squares means (LSMEANS) command of 

SAS with a Tukey-Kramer multiple pairwise comparison adjustment, and statistical 

significance was declared at P < 0.05.   
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Results and discussion 

Milk composition 

Milk composition was analyzed nine times for each individual cow in the study.  

Results are presented as the grand mean from the nine analyses of fat, protein, and SNF 

percentage for all cows over the three collection days for each dietary treatment within a 

period (Table 4).  Milk protein and SNF concentrations increased concomitantly (P < 

0.05) with increased dietary inclusion of DDGS. Differences in milk protein percentage 

between control (no DDGS) and DDGS-fed cows are not always observed (Nichols et al., 

1998; Leonardi et al., 2005; Anderson et al., 2006; and Janicek et al., 2008). Powers et al. 

(1995) observed that milk protein concentration and SNF increased when cows were fed 

high quality DDGS, and, consequently, it was suggested that decreased milk protein 

content and SNF from cows fed DDGS could be an indicator of poor quality DDGS.  The 

results and speculation by Powers et al. (1995) could explain why we found a 

concomitant increase in milk SNF and protein when dietary DDGS inclusion was 

increased when others did not, though it is difficult to test this explanation because “good 

quality” is defined poorly.    

Milk fat concentration of the control diet milk (3.17%) was greater than that of 

the 10% DDGS diet milk (2.89%; P = 0.0275), and feeding 25% DDGS caused even 

further milk fat depression (2.60%; P < 0.0109) (Table 4).  DDGS have about 11% lipid 

content on a DM basis (Hoffman and Baker, 2010) and are considered a good source of 

energy for dairy cows (Schingoethe et al., 2009). The primary purpose of feeding fats and 

oils to dairy cows is to provide higher energy intake to increase milk yield; however, 

dietary lipid supplements also could affect the concentration of fat and the fatty acid 
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composition in milk (Sutton, 1989) as well as inhibit fiber digestion (Ikwuegbu and 

Sutton, 1982).  Typically, dairy nutritionists advise limited dietary inclusion of DDGS 

(<20%; Anderson et al., 2006) because the increased feeding of unsaturated dietary fatty 

acids could cause milk fat depression.  Indeed, the present study confirmed this response. 

The decrease in fat content has been attributed to the effect of dietary lipids on 

ruminal fermentation (Kononoff, 2006), the suppression of de novo synthesis of fatty 

acids in the mammary gland (Offer et al., 1999), and insufficient forage fiber in the diet 

(Kalscheur et al., 2012).  One possible reason for the observed milk fat depression in milk 

from cows fed DDGS is a result from incomplete biohydrogenation of C18:2, resulting in 

production of a conjugated linoleic acid (C18:2 trans-10 cis-12) that inhibits de novo milk 

fat synthesis in the mammary gland (Baumgard et al., 2001).  A study by Leonardi et al. 

(2005) found milk fat concentration was decreased significantly by the dietary inclusions 

of up to 15% DDGS.  In contrast, Anderson et al. (2006) found no differences in milk fat 

concentrations among all diets (0%, 10%, and 20% DDGS), but they did observe a 

tendency for increased feeding of DDGS to lactating dairy cows to decrease milk fat 

content. Similar results were found by Sasikala-Appukuttan et al. (2008).  A meta-

analysis done by Kalscheur (2005) observed that milk fat depression only occurred when 

cows were fed DDGS in rations that contained less than 22% forage NDF and 50% total 

forage.  Our diets contained more than 32% NDF and more than 54% forage indicating 

that percentage forage and NDF are not enough to explain the conflicting observations of 

the relationship of the feeding of DDGS and milk fat depression.  A second possible 

reason for milk fat depression in cows fed DDGS has been speculated to result from the 

low amount of “effective fiber” in DDGS, meaning the particles are small and therefore 
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are not as effective of a forage source as the forage that the DDGS replace (Kalscheur et 

al., 2012).   

Milk fat percentage from cows fed the control diet was lower than expected for 

Holsteins that usually produce milk with approximately 3.5% fat (Walstra and Jenness, 

1984; Overman et al., 1939). Heat stress may have caused some milk fat depression 

(Sasikala-Appukuttan et al, 2008) because the current study was conducted from July 

(mid-summer) through October (early fall). 

Ruminal short chain fatty acids 

In the present study, we found no differences in the concentrations of the SCFA in 

ruminal fluid except for concentrations of butyrate and isovalerate (Table 5).   Variability 

in the measured concentrations of SCFA and a lack of consistent trend, however, indicate 

that the few differences are not related to treatment.  Our results are consistent with other 

studies that found feeding DDGS influenced ruminal isovalerate and valerate with no 

apparent trend emerging (Kleinschmit et al., 2007). In another study, feeding both wet 

and dried distillers grains with solubles only caused changes in isovalerate concentrations 

(Anderson et al., 2006).  On the basis of research by us and others, DDGS do not seem to 

affect ruminal SCFA concentrations in a meaningful way, and importantly, DDGS do not 

affect acetate to propionate ratios. 

Milk fatty acid profile  

Feeding lactating dairy cows the 25% DDGS diet significantly increased (P < 

0.05) stearic (C18:0), oleic (C18:1), and linoleic (C18:2) concentrations in milk (Table 6).  

These results were to be expected because they have been reported in many studies 

(Schingoethe et al., 1999; Leonardi et al., 2005; Anderson et al., 2006; Sasikala-
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Appukuttan et al., 2008).  The reason that feeding DDGS increases unsaturated fatty acid 

content in milk is because corn oil contains greater than 60% C18:2, some of which 

escapes the rumen without any biohydrogenation or with incomplete biohydrogenation, 

thereby contributing to increases in the unsaturated fatty acids found in the milk 

(particularly C18:1 and C18:2).  Concentrations of no other fatty acids in milk were affected 

by feeding DDGS (P > 0.05).     

Sensory evaluation  

We hypothesized that fortification of milk with antioxidants such as vitamin E or 

vitamin C is a potential way to limit development of SOF (Figure 1).  Sensory properties 

of non-fortified (control) milk did not differ from milk fortified with tocopherol (P > 0.4; 

Table 8).  In this experiment, however, vitamin C fortification resulted in the greatest 

metal-oxidized off-flavor score of all milks when cows were fed dietary rations 

containing 25% DDGS.  In all other cases, antioxidant fortification had no effect on off-

flavors detected by the sensory panel.  As with other differences in off-flavors, all mean 

scores were low, suggesting no practical impact of antioxidant fortification upon milk 

flavor for up to seven days of storage without exposure to light.   

Vitamin C fortification, unexpectedly, seemed to decrease the oxidative stability 

(on the basis of metal-oxidized off-flavors) of milk enough that trained panelists could 

notice.  Under certain conditions, vitamin C can act as a pro-oxidant by regenerating the 

perferryl radical at the initiation step of lipid oxidation (Lindmark-Månsson and Åkesson, 

2000). Haase and Dunkley (1969) reported that vitamin C has pro-oxidant properties 

because it is able to catalyze the oxidation of linoleic acid (Haase and Dunkley, 1969) 

and can convert metal ions (e.g., iron, copper, manganese) to a more reactive ionic form.  



www.manaraa.com

92 
 

 
 

However, it was reported that abomasal infusion of iron and copper salts had no effect on 

the concentration of iron and copper ions in milk and did not result in differences in off-

flavors detected by a trained sensory panel (Mann et al., 2013).  Moreover, the 25% 

DDGS diet actually contained the lowest concentration of iron, with other pro-oxidant 

metals having an inconsistent trend (Table 2).  However, because a principal role of 

vitamin C is to reduce the metal core of metalloproteins (e.g., oxidases) in the reduced 

state, and because milk from cows fed 25% DDGS had the highest protein content, it is 

possible that oxidases that survive pasteurization and can produce hydrogen peroxide 

(e.g., xanthine oxidase; Claeys et al. 2013) were in greater concentration in milk from 

cows fed 25% DDGS and were the mechanism through which vitamin C acted as a pro-

oxidant when fortified in combination with milk from cows fed 25% DDGS.  

Additionally, xanthine oxidase activity has been shown to be preserved by feeding 

supplemental vitamins C and E in combination with L-arginine to broiler chickens 

(Bautista-Ortega et al., 2014), providing further evidence that xanthine oxidase, in 

combination with vitamin C, could promote the development of off-flavors.     

Vitamin C is an antioxidant, however, Van Aardt et al. (2005) reported that 

vitamin C fortification in milk at 0.05% concentration can have a negative sensory impact 

on milk flavor.  Kim (2012) reported that vitamin C showed pro-oxidant properties at 

0.02% (w/v) concentration in oil-in-water emulsions, such as milk, while tocopherol had 

strong antioxidant capacity. Additionally, Barrefors et al. (1995) observed higher C18:2 

and C18:3 contents, lower tocopherol contents, and higher vitamin C content in milk with 

SOF (Barrefors et al., 1995).  Increased tocopherol content can improve the resistance of 

milk fat to oxidation (Charmley and Nicholson, 1993; Focant et al., 1998, Nicholson and 
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St-Laurent, 1991).  Other studies, however, reported that increasing tocopherol 

concentration in milk by fortification was ineffective in controlling oxidized flavor in 

milk (Charmley and Nicholson, 1994; Van Aardt, 2005).  The conflicting results would 

suggest that antioxidant fortification to prevent development of SOF is not as simple as it 

would seem, possibly owing to other factors in the milk composition and/or processing.  

Bitter and cooked off-flavors were the only off-flavors significantly affected by storage 

time, and those flavor defects were only detected in milk from cows that were fed the 

control diet (Table 7).  Still, low mean scores limit the practical significance of the 

findings.  Spontaneous oxidation was expected to manifest within seven days of storage 

(Timmons et al. 2001), which is why milk quality was not evaluated beyond day seven.  

These findings imply that these milk samples had sufficiently low-intensity off-flavor 

scores that they would likely be of little concern to most consumers for at least seven 

days.  This milk was handled with great care to avoid exposure to light, and a fresh jug 

was opened on each day of sensory analysis. 

Although significantly higher off-flavor scores were noted for milk from the 25% 

DDGS diet when milk was fortified with vitamin C (metal oxidized) and on the seventh 

day of storage for milk from cows fed the control diet (bitter), all of the off-flavor 

sensory scores were lower than 1.5 on a 15 cm line scale. So, practically speaking, no real 

apparent oxidized off-flavors were detected in any of the milk samples and DDGS did not 

contribute to a decrease in milk oxidative stability (Tables 7 and 8). 

Peroxide value and free fatty acid content 

The PV for all milk samples were lower than 0.5 meq peroxides/kg (data not 

shown), which was lower than the 0.7 meq/kg PV reported in a previous study (Let et al., 
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2005) for non-oxidized milk.  Low amounts of FFA were detected (less than 1.05% oleic 

acid, data not shown) in several milk samples from the first period, but those results were 

not reproduced in the second and third period milks because all were below the detection 

limits. Strong correlations between concentrations of one of the main lipid oxidation 

products (lipid hydroperoxides) and the oxidized flavor in sensory analyses has been 

reported (Hedegaard et al., 2006). In the current study, the chemical analysis results 

support the sensory evaluation; no primary lipid oxidation products (i.e., peroxides) were 

detected by quantification of PV, likely because sensory analysis is able to distinguish 

small differences in oxidized flavor in milk undetectable by chemical analysis of PV (Let 

et al., 2005).  Because we did not detect peroxides in any of the milk samples, one of two 

explanations are possible: 1) there was no lipid oxidation or 2) all the peroxides formed 

had decomposed into secondary lipid oxidation products (e.g., aldehydes and ketones). If 

the second scenario was true, the sensory panel would have detected much higher 

oxidized off-flavors in the milk samples. No practically significant oxidation, however, 

was detected by the sensory panel. Therefore, the PV and sensory results were sufficient 

to support our finding that milk from cows fed DDGS up to 25% DM under these 

experimental conditions would likely be acceptable to the consumer.  

As mentioned previously, feeding of 10 and 25% DDGS increased long-chain 

unsaturated fatty acids, C18:1 and C18:2 in milk (Table 6). These increases, however, did 

not cause any increase in PV (all less than 0.5 meq/kg), data not shown) in any of the 

milk samples, nor was any practically significant oxidized flavor detected by the trained 

sensory panel (Tables 7 and 8). A similar situation was observed in a previous study 

where greater concentrations of C18:1 in milk did not result in a higher concentration of 
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lipid hydroperoxides, but the elevated concentration of PUFA did (Havemose et al., 

2006). And in a second study, Liu et al. (2010) observed decreased oxidative stability in 

milk with increased ω-3 PUFA content.  In our study, we did not detect any differences in 

C18:3 content in milk from the three dietary treatments, potentially because C18:3 and C20:0 

co-eluted.  Havemose et al. (2004) reported that milk with lower C18:1 and C18:2, but 

higher C18:3 had significantly higher content of lipid hydroperoxides.  Additionally, the 

development of SOF in milk has been related to the higher concentration of PUFA in 

milk fat (Timmons et al., 2001), suggesting that C18:3 content could possibly be an 

indicator of the oxidative stability in milk. Timmons et al. (2001), however, suggested 

that PUFA alone is not always sufficient to promote the development of SOF in milk, 

which supported the results in the present study and those of Fearon et al. (2004).   

Thermal treatment of milk may possibly increase the antioxidant capacity in milk 

because of protein unfolding and exposure of thiol groups (Taylor and Richardson, 1980; 

Tong et al., 2000). Heat pasteurization could be one of the factors explaining why no 

practically significant oxidation was found by either the trained sensory panel or by 

chemical analyses. Milk samples were pasteurized within 4 hours after collection from 

the farm, which is shorter than common industry practice. Milk lipid oxidation is a 

complicated process, because fatty acid composition and antioxidants are only two 

aspects of the many factors that could influence milk oxidative stability. Pro-oxidative 

factors also can affect to the oxidative stability of milk (e.g., riboflavin).  Clearly, lipid 

oxidation in milk is a complex interplay of pro-oxidants and antioxidants (Lindmark-

Månsson and Åkesson, 2000).); the balance between pro-oxidants and antioxidants is a 

critical factor for the oxidative stability of milk (Stapelfeldt et al., 1999; Morales et al., 
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2000). Granelli et al. (1998) related the development of SOF in milk with the ratios 

between antioxidants and polyunsaturated fatty acids (PUFA) and found that milk 

samples without SOF tended to have higher antioxidant to PUFA ratios than the milk 

samples with SOF (Granelli et al., 1998).  Genetics of cows has been mentioned as an 

influence on the occurrence of SOF in milk (Juhlin et al., 2010b).  Additionally, Juhlin et 

al. (2010a) found that copper ion concentration in milk from first lactation cows (one to 

three weeks postpartum) was significantly linked to development of SOF.  In our study, 

we used both primparous and multiparous mid-lactation dairy cows; so, no direct 

comparison can be made. Clearly, a number of factors have been implicated in the 

development of SOF in milk; so, the cause is likely not a simple one but rather a 

multifaceted problem.   

The DDGS used in this study was not responsible for SOF in milk.  Additionally, 

because our cows were mid-lactation and were primiparous and multiparous rather than 

fresh first-lactation cows, we cannot discount SOF that may appear if this experiment was 

repeated by using first-lactation transition cows, which produce milk with more copper 

ions (Juhlin et al., 2010a).  Future studies, however, would need to be done to address the 

question of the occurrence of SOF in early lactation.   

Conclusion 

Feeding 10 and 25% DDGS (DM basis) in a total mixed ration to lactating dairy 

cows resulted in significant milk fat depression and concomitant increase of SNF and 

protein content of milk. Milk fatty acid profile was altered by dietary inclusion of DDGS.  

As expected, C18:0 and long-chain unsaturated fatty acids (C18:1 and C18:2) increased in 

milk from cows fed DDGS diets. Ruminal SCFAs were not affected by treatment, with 
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the exception of butyrate and isovalerate.  A trained sensory panel did detect statistically 

significant off-flavors in milk from cows fed DDGS, but the low intensity of those 

defects was of little practical significance. Very low peroxide values from assayed milk 

supported the results reported by our trained sensory panel. Because no apparent 

oxidation was detected in milk from cows fed DDGS, the explanation for spontaneous 

oxidation and SOF is still unclear.  By using our experimental conditions and DDGS 

source, DDGS does not cause development of SOF in milk.   
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Table 1. Ingredients of three treatment diets containing differing concentrations of dried 
distillers grains with solubles (DDGS) 1  
 

Treatment 

Ingredient, % DM 0% DDGS 10% DDGS 25% DDGS 

Corn silage 41.7 43.2 41.1 

Alfalfa hay 13.1 13.9 13.2 

Soybean meal (47%) 12.3   6.1   1.7 

Cottonseed (whole)   8.5   9.0   8.5 

Finely ground corn   1.6   8.6   3.3 

DDGS   0.0 10.8 24.3 

Lactation mix2 22.6   8.4   8.0 

1All ingredients were mixed and fed as a total mixed ration. 
2Lactation mix ingredients as fed, %: 73.9% ground rolled corn; 4.5 % Supercharger II 
(fat supplement; Origo, New Ulm, MN); 4.3% limestone; 3.6% blood meal; 3.2% sodium 
bicarbonate; 2.7% fine rock salt; 2.3% urea; 1.8% pork meat and bone meal; 1.2% 
monocalcium phosphate 21%; 0.9% magnesium oxide; 0.7% Metasmart (methionine 
supplement (Adisseo USA Incorporated, Anpharetta, GA)); 0.5% Dynamate (vitamin and 
trace mineral premix (Consumer’s Supply Distributing Company, Sioux City, IA)), ; 
0.5% Dairy Balancer II (vitamin and trace mineral premix (Nutritional Professionals 
Incorporated, Hortonville, WI)); 0.04% Rumensin 90.    
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Table 2. Composition of dried distillers grains with solubles (DDGS) and 
total mixed rations 

  Total mixed rations1 

Component DDGS 0% 10% 25% 

Crude protein (CP), % 29.5 17.8 16.9 18.5 

AD-ICP, % of CP2 N/A 6.7 7.0 6.5 

Protein Sol., % of CP 17.0 28.8 30.4 26.2 

Fat 12.1 5.9 5.5 7.2 

aNDF, %3 28.8 32.5 32.7 33.9 

Lignin, % of NDF4  10.4 10.5 10.0 

Starch, % N/A 24.8 24.7 19.7 

ND-ICP, % of DM (est.)5 5.1 2.8 2.7 3.0 

Ash, % 4.6 6.5 6.9 6.4 

Calcium, % 0.1 0.8 0.6 0.6 

Manganese, ppm N/A 48.0 36.5 33.0 

Zinc, ppm N/A 79.5 59.5 72.5 

Copper, ppm N/A 19.5 15.5 18.0 

Iron, ppm N/A 241.5 212.0 207.0 

T.D.N.6 (OARDC)7, % 85.8 73.1 72.3 73.4 

N.F.C.8, % N/A 39.0 39.0 34.9 

NEL
9 (OARDC)7, Mcal/kg  40.8 1.67 1.65 1.68 

1 Expressed as a percentage of dry matter 
2 Acid detergent insoluble crude protein 
3 Amylase-treated neutral detergent fiber 
4 Lignin % of neutral detergent fiber 
5 Neutral-detergent insoluble crude protein as a percent of dry matter estimated 

6 Total digestible nutrients 
7 A summative calculation based on an Ohio Agricultural Research and Development 
Center method (anapproach for energy evaluation) 
8 Non-fiber carbohydrate 
 9 Net energy of lactation 
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Table 3.  Descriptions and recipes* for seven off-flavors of milk evaluated by trained 
panelists. 

Off-flavor  Descriptors Recipes for creating “definite” level 
anchor for defect 

Bitter Aftertaste towards the back of 
the throat; piercing and 
throbbing 

Prepare 0.5% quinine solution with 
deionized water.  Add ½ tsp to 1L of 
pasteurized whole milk from 
paperboard. 

Cooked Eggy, sulfur, custard Organic ultrapasteurized whole milk 
from paperboard. 

Feed Grassy, stalky, hay Boil 1.5 L of tap water; add ½ cup of 
timothy/alfalfa hay; steep 5 min.  
Filter through coffee filter.  Add 1.5 
TBS to 1 L. pasteurized whole milk 
from paperboard. 

Flat  Watered down, thinner mouth 
feel, less dairy fattiness 

Lowfat (1%) pasteurized milk from 
paperboard. 

Foreign Bleach, sanitizer, chemical, 
and/or other atypical flavor for 
milk not included in the other 
categories 

Prepare a proper chlorine or iodine 
sanitizer solution.  Add 2 tsp to 1 L 
pasteurized whole milk from 
paperboard. 

Light 
oxidized 

Cardboard, pasty taste, mouth-
drying sensation, smells like wet 
brown paper towel 

Whole milk in translucent plastic 
exposed to at least 30 min of UV or 
fluorescent light. 

Metal 
oxidized 

Copper penny aroma/flavor, 
tingling sensation on tongue; 
some similar mouth-drying 
characteristics as light oxidized 

Prepare 0.25% cupric sulfate solution 
with deionized water.  Add ¼ tsp to 1 
L pasteurized whole milk from 
paperboard.  Allow to stand for 90 
min. prior to tasting. 

*Modified from Costello and Clark, 2009.   
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Table 4. Composition and yield of milk from cows fed 0, 10, and 25% dried distillers 
grains with solubles (DDGS) supplemented as total mixed ration1 

 Treatment   

Item 0% DDGS2 10% DDGS2 25% DDGS2  P-Value 

Fat, % 3.17 ± 0.10c 2.89 ± 0.10b 2.60 ± 0.09a  <0.0001 

Protein, % 3.71 ± 0.03a 3.77 ± 0.02b 3.83 ± 0.02c  <0.0001 

SNF, % 9.90 ± 0.07a 10.02 ± 
0.06b 

10.19 ± 0.06c  <0.0001 

Yield, kg/day 33.40 ± 1.37b 32.90 ± 
1.38b 

30.62 ± 1.38a  <0.0001 

a, b, c Means within a row with different superscripts differ (P <0.05) 
1Mean value from 19 cows 
2Expressed as percentage of dry matter 
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Table 5. Ruminal SCFA from lactating dairy cows fed 0, 10, and 25% dried distillers 
grains with solubles (DDGS) as a total mixed ration1 

  Treatment   

Measurement Day 0 0% DDGS2 10% DDGS2 25% DDGS2  P-value 

SCFA, mol %       

Acetate (A) 62.97±0.88 61.99±1.01 63.00±0.92 60.94±1.00  0.278 

Propionate (P) 23.00±0.62 24.21±0.68 23.19±0.66 23.67±0.69  0.406 

Isobutyrate 0.86±0.06 0.87±0.07 0.85±0.06 0.96±0.07  0.476 

Butyrate 10.11±0.56ab 9.90±0.60a 10.10±0.58ab 11.29±0.60b  0.036 

Isovalerate 1.70±0.11 1.53±0.12 1.48±0.11 1.66±0.12  0.047 

Valerate 1.34±0.08 1.36±0.09 1.37±0.09 1.38±0.09  0.961 

Total, mM 73.11±4.08 79.17±4.68 72.83±4.25 68.08±4.60  0.152 

A:P 2.78±0.10 2.58±0.12 2.77±0.11 2.64±0.12  0.358 

a, b Means within a row with different superscripts differ after Tukey HSD multiple 
comparisons analysis (P <0.05) 
1Least squares means plus or minus the standard error of the mean 
2Expressed as a percentage of dry matter 
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Table 6.  Fatty acid composition of milk from cows fed dried distillers grains with 
solubles (DDGS)1 

 Treatment  

Fatty acid, wt. %  0% DDGS2 10% DDGS2 25% DDGS2  P-Value 

C4:0  1.10±0.16 1.16±0.16 1.04±0.17  0.848 

C6:0  0.45±0.08 0.33±0.08 0.45±0.08  0.479 

C8:0  0.80±0.11 0.72±0.11 0.71±0.11  0.719 

C10:0  2.59±0.32 2.00±0.33 2.13±0.34  0.389 

C12:0  3.33±0.42 2.33±0.43 2.63±0.44  0.217 

C14:0  10.79±0.94 8.73±0.97 9.05±0.99  0.248 

C14:1  2.33±0.48 1.28±0.50 1.75±0.51  0.299 

C15:0  1.64±0.30 0.89±0.31 1.20±0.31  0.101 

C15:1  0.75±0.29 0.73±0.30 0.23±0.31  0.430 

C16:0  27.70±1.03 26.45±1.06 25.58±1.09  0.374 

C16:1  1.66±0.51 1.70±0.52 2.14±0.52  0.598 

C17:0  1.11±0.40 0.33±0.41 0.76±0.42  0.375 

C17:1  0.40±0.18 0.63±0.18 0.36±0.19  0.537 

C18:0  12.17±0.56a 14.00±0.57ab 14.27±0.59b  0.019 

C18:1  28.56±1.42a 33.52±1.46b 34.37±1.51b  0.010 

C18:2  2.87±0.15a 3.45±0.16b 3.52±0.16b  0.006 

C18:3 + C20:0  1.38±0.10 1.52±0.10 1.50±0.10  0.518 

C22:0  0.40±0.05 0.37±0.05 0.35±0.05  0.819 

a, b Means within a row with different superscripts differ (P <0.05) 
1Least squares means plus or minus the standard error of the mean 
2Expressed as a percentage of dry matter 
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Table 7.  Mean sensory scores2 of milk from cows fed 0, 10, and 25% dried distillers grains with solubles (DDGS) and stored 
for 1, 3, and 7 days 

 Treatment    
 0% DDGS1  10% DDGS1  25% DDGS1    
Flavor Day 1 Day 3 Day 7  Day 1 Day 3 Day 7   Day 1 Day 3 Day 7  SEM P-Value 
Bitter, cm 0.12b 0.10ab 0.38b  0.18 0.19 0.13  0.08 0.08 0.12  0.06 0.032 
Cooked, cm 0.80b 0.45ab 0.36a  0.51 0.55 0.39  0.34 0.51 0.50  0.10 0.017 
Feed, cm 0.26 0.30 0.24  0.31 0.16 0.24  0.28 0.18 0.33  0.06 0.247 
Flat, cm 0.56 0.63 0.32  0.74 0.54 0.73  0.69 0.61 0.54  0.11 0.210 
Foreign, cm 0.96 0.55 1.03  1.03 0.95 0.93  1.03 0.95 0.85  0.22 0.248 
Light-oxidized, cm 0.64 0.88 0.84  0.77 0.83 0.73  0.77 0.64 0.80  0.11 0.367 
Metal-oxidized, cm 0.66 0.35 0.47  0.50 0.56 0.51  0.91 0.71 0.74  0.12 0.608 

a,b Means within a treatment and row with different superscripts differ (P < 0.05) 
1 Expressed as a percentage of dry matter 
2 Obtained from panelist ratings on 15-cm line scales 
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Table 8.  Mean sensory scores2 of milk from cows fed 0, 10, and 25% dried distillers grains with solubles (DDGS) and fortified 
with vitamin E or vitamin C 

 Treatment1    
 0% DDGS1  10% DDGS1  25% DDGS1   P-Value 
Flavor None Vit. E Vit. C  None Vit. E Vit. C  None Vit. E Vit. C  SEM Trt×Fort 
Bitter, cm 0.13 0.31 0.16  0.15 0.15 0.19  0.08 0.08 0.14  0.06 0.304 
Cooked, cm 0.69 0.38 0.53  0.53 0.41 0.50  0.42 0.51 0.42  0.10 0.335 
Feed, cm 0.25 0.27 0.28  0.24 0.24 0.22  0.24 0.30 0.26  0.06 0.976 
Flat, cm 0.41 0.66 0.44  0.67 0.80 0.54  0.78 0.70 0.36  0.11 0.240 
Foreign, cm 0.55 0.98 1.01  0.94 1.08 0.90  0.97 0.73 1.14  0.22 0.052 
Light-oxidized, cm 0.72 0.75 0.90  0.84 0.57 0.93  0.65 0.61 0.95  0.11 0.547 
Metal-oxidized, cm 0.27 0.54 0.67  0.44 0.49 0.65  0.51a 0.45a 1.40b  0.11 0.001 

a,b Means within a treatment and row with different superscripts differ (P < 0.05) 
1 Expressed as a percentage of dry matter.  Vitamin E and Vitamin C fortification at 0.06% w/w fortification 
2 Obtained from panelist ratings on 15-cm line scales 
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Figure 1.  Illustration of oxidative off-flavor development and autoxidation of milk fat.  
Initiators of this chain reaction in milk include metals and UV light. Initiation of the 
reaction illustrated in this figure (1), followed by propagation of the reaction (2), and 
finally termination (3) of the chain reaction are described.  The chain reaction will 
continue until the radical species is quenched by an antioxidant or by combination with 
another radical species. 
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CHAPTER 6: SHORT COMMUNICATION:  FEEDING REDUCED-FAT DRIED 

DISTILLERS GRAINS WITH SOLUBLES TO LACTATING HOLSTEIN DAIRY 

COWS DOES NOT NEGATIVELY INFLUENCE QUALITY OF BABY SWISS 

CHEESE 

E. D. Testroet1, D. C. Beitz2, and S. Clark1* 

1Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 

50011 
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A manuscript submitted to J. DAIRY SCI. 3.21.2017 

Abstract 

Swiss type cheese quality is dependent on the formation of ideal eyes in the cheese.  

Late-blowing defects have a negative impact for both processors (sliceability is affected 

negatively) and consumers (who expect round glossy eyes).  Late-blowing defects are, 

therefore, an economic issue.  Feeding of dried distillers grains with solubles (DDGS) to 

lactating dairy cows has been implicated as a cause of late blowing defects but has 

limited support from scientific research.  Our objectives were to test the impact of 

feeding reduced-fat dried distillers grains with solubles (RF-DDGS; ~6% fat) to lactating 

dairy cows on the composition of milk and on the suitability of the milk for production of 

high-quality baby Swiss cheese.  Based on our previous research, we hypothesized that 

feeding 20% RF-DDGS to dairy cows would not result in adverse effects in milk 

composition or in quality of baby Swiss cheese produced from that milk.  To test this 

hypothesis, 35 multiparous and lactating Holstein dairy cows were assigned randomly to 
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one of two dietary treatments in a 2 × 2 crossover design.  Treatment one was a standard 

corn/corn silage/hay diet with Soy Plus, and treatment two was based on the same diet 

with the exception of 20% of RF-DDGS as DM in place of Soy Plus.  Treatment diet two 

was supplemented with ruminally-protected lysine to ensure diets were isonitrogenous, 

isoenergetic, and contained similar limiting dietary amino acids.  There were no treatment 

effects on milk yield (15.98 and 15.85 kg/day, control and RF-DDGS, respectively), milk 

fat production (1.27 and 1.25 kg/day), milk fat percentage (3.65 and 3.61 %), milk 

protein production (1.05 and 1.08 kg/day), lactose percentage (4.62 and 4.64%), milk 

total solids (12.19 and 12.28%), and somatic cell count (232.57 and 287.22).  Milk 

protein percentage, however, was increased (3.01 and 3.11%) by feeding RF-DDGS and 

milk urea nitrogen decreased (14.18 and 12.99 mg/dL), indicating that protein utilization 

may be more efficient when cows are fed RF-DDGS with ruminally-protected lysine.  

For cheese production, milk was collected and pooled six times for each dietary 

treatment.  Regarding appearance, cheeses were overset, but the only significant 

treatment effect was in eye size, with the control cheese eyes being closer to ideal than 

the RF-DDGS cheese.  These results indicate that RF-DDGS can effectively be fed to 

cows at a 20% inclusion rate (DM) without negatively influencing quality and suitability 

of milk for production of quality baby Swiss chesse.   

 

Keywords:  DDGS, late-blowing, eyes, sensory 
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Introduction 

Late-blowing defects in Swiss type cheeses are unacceptable to both the producer 

and the consumer.  Cheeses that exhibit the late-blowing defect cannot be sold at full 

price, cause problems for high-speed slicing operations, and, in general, result in an 

economic loss for the producer (White et al., 2003).  The inclusion of DDGS in the 

rations of lactating dairy cows has been implicated as a cause of late blowing defects both 

by the scientific community and the dairy community, including dairy producers 

(Personal conversation; Houck et al., 2007).  However, our research group investigated 

the effects of feeding full-fat DDGS to dairy cows on the quality of baby Swiss cheese 

and found no significant differences in the quality of baby Swiss cheese when cows were 

fed a conventional TMR or a TMR containing full-fat DDGS (~ 13% fat) (Sankarlal et 

al., 2015).  Another concern that has been raised is the contamination of milk by 

Clostridium tyributiricum originating from DDGS.  Our research team, however, found 

no C. tyributiricum in the DDGS fed to those cows whose milk was used for the 

production of that Swiss cheese, but our team did find gas-producing spores in non-

DDGS feedstuffs, feces, milk and baby Swiss cheese (Manimanna Sankarlal et al., 2015).   

Because of the economic value of corn oil and increased efficiency of the 

extraction of corn oil from DDGS, in the future, full-fat DDGS are not likely to be widely 

available.  Therefore, our objective was to investigate the effects of feeding reduced-fat 

DDGS (RF-DDGS) (~ 6% fat) on the composition of milk produced and the quality of 

baby Swiss cheese produced from that milk compared with a conventional TMR.  We 

hypothesized, based on our previous research, that feeding RF-DDGS to lactating 
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Holstein dairy cows would not adversely affect milk composition or quality of baby 

Swiss cheese made from the milk of those cows.       

Materials and methods 

All procedures were approved by the Iowa State University Animal Care and Use 

Committee (IACUC).  Thirty-five multiparous lactating Holstein dairy cows were 

assigned to one of two dietary treatment groups.  Rations were formulated to meet NRC 

requirements, to be isonitrogenous and isoenergetic (Chapter 4, Tables 1 and 2), and to 

contain similar available amino acid concentrations.  Ration one (control) was a standard 

corn/corn silage/hay based ration supplemented with soybean meal as a protein source. 

Ration two was formulated by using the same base ration as the control but with 20% of 

the dry matter being a RF-DDGS (Poet Biorefining, Jewell, IA) containing approximately 

6% fat in place of SoyPlus (Dairy Nutrition Plus, Des Moines, IA) (Details reported in 

Testroet et al., 2017 (Chapter 4, Table 1).  The RF-DDGS ration was supplemented with 

ruminally protected lysine to make diets similar in available limiting amino acids (Details 

reported in Testroet et al., 2017 (Chapter 4, Table 1).  Cows were fed each diet in a two-

period, two-treatment crossover design.  Each experimental period lasted 35 days, and 

cows were fed individually using Calan gates (American Calan, Northwood, New 

Hampshire), allowing for measurement of individual feed intake.  Additionally, 

individual milk production was recorded daily by using a Boumatic milking system 

(Boumatic LLC, Madison, WI). 

After a 14-day acclimation period, weekly individual milk samples were collected 

at the three milkings for proximate analyses and assay of milk urea nitrogen and somatic 
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cell count (Reported in Chapter 4, Table 3) (Performed by using official NIR methods at 

Dairy Lab Services, Dubuque, IA). 

For cheese making, milk from one complete milking of each treatment group 

(control or RF-DDGS) was collected, two to three times during weeks three and four, 

during each of the three 35-day periods.  The milk cans and dump buckets were washed 

with automatically diluted Ecolab® Oasis Enforce (St. Paul, MN) and sanitized with 

automatically diluted Ecolab® Mikroklene® (St. Paul, MN) iodine-based sanitizer.  The 

morning milking (approximately 6:30 am) was collected during the farm’s usual milk 

collection routine.  Teats were sanitized with 1000 ppm chlorine predip (ECAcept 

technology, Zurex PharmAgra LLC, Middleton, WI) and wiped dry with individual towels 

before collecting milk from each cow by the Boumatic milking system (Boumatic, 

Madison, WI).  Milk from two groups of six cows was collected by re-routing the Boumatic 

line into a dump bucket.  After the milk of two cows fed the same diet filled a dump bucket, 

it was dumped through cheesecloth into a labeled milk can.  Milk was transported at 

ambient temperature to the ISU Center for Crops Utilization Research (CCUR) pilot plant 

in the Food Sciences Building at Iowa State University (Ames, IA) within 20 min of 

collection of milk from the last cow. The milk cans were immediately weighed and tested 

for fat, protein and lactose prior to further processing (within 60 min) by using a 

LactiCheck Milk Mini Analyzer (Page and Pederson Inc, Hopkinton, MA).  Those who 

collected milk at the dairy farm showered and changed into clean clothes before 

participation in cheese making to minimize additional external contamination of milk to be 

used for cheese production.  

Measured percentage fat and protein were used to standardize milk to the target 
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fat:protein ratio (0.88±0.05). If the fat:protein ratio was not 0.88±0.05, the milk was 

separated and standardized, and cream or skim from the milk collected from the same 

experimental cows was added to raise or lower the ratio to 0.88±0.05, respectively. Milk 

was separated by using a Type LWA 205 Westfalia Separator (219 rpm in 2.5 dial setting, 

Dusseldorf, Germany).  Pooled standardized milk from each dietary treatment was poured 

into a labeled cheese vat and heat treated (63°C, 2 min) by delivering steam-heated water 

to the jacketed vat with gentle agitation. After heat treatment, the milk was gradually 

cooled to 33°C by running cold water in the jacketed vat with gentle agitation of the milk.  

Baby Swiss cheese was made by using 0.32g (± 0.03) CHOOZIT 60 (DuPont TM 

Danisco®, New Century, KS) and 0.12g (± 0.02%) CHOOZIT eyes (DuPont TM Danisco®) 

per 100 kg milk.  Coagulant (13 mL/100 kg of milk, DCI Supreme, Dairy Connection Inc., 

Madison, WI) was diluted with cold water to a ratio of 1:40 and added with slow agitation 

for one minute.  The cheese curd was allowed to set for approximately 30 min, tested for 

firmness manually and visually, and manually cut with 12-cm wire curd knives.  About 

25% of vat volume of whey was initially removed, followed by constant stirring and 

addition of water (3 to 5% of the vat volume) at 33°C; the forework proceeded for 35 min 

at 33°C.  Gradually, the curds were cooked by increasing the temperature to 40°C over a 

15-min period and then to 46°C over a 10-min period by adding steam to the jacket of the 

vat.  Warm water (~10 % of the vat volume) was added at 44°C to facilitate the rise in 

temperature of the cheese to 46°C(±1°C), where the curds were held for 42 min (postwork). 

Whey was removed after postwork at a target pH of 6.4.   

Cheese curds were collected into perforated stainless steel Longhorn hoops. Towers 

were pressed under whey by using a 7 kg weight for 15 min. The whey was drained 
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completely, and the cheese block was pressed for 1 hr with 11 kg, 1 hr with 23 kg, and an 

additional 3 hr with 35 kg of weights.  The pressing time was based on the time required 

for the pH of the cheese to drop from 6.4 to 5.25 (±0.05) (Accumet® Basic AB15, Fisher 

Scientific Inc, Pittsburgh, PA).  The weights were removed, and cheese was fermented in 

an empty basin for an additional 5 to 8 hr at 22°C + 3°C. Brining was carried out in 

saturated brine containing 23% NaCl and 0.38% CaCl2, for up to 7 to 9 hr (depending on 

block weight (approximately 30 min/kg cheese)).  

Cheese blocks were vacuum-packed in clear vacuum seal bags (Fisher Scientific 

Inc, Pittsburgh, PA) with a Koch vacuum packing machine (Koch Equipment LLC©, 

Kansas City, MO).  Cheeses were stored at 10±1°C for 7 days (Pre-cool), 22±3°C for 21 

days (warm room), and 4±1°C for 60 days (cold room).  Cheeses were flipped weekly.  

Proximate analysis (conducted using standard methodology, at South Dakota State 

University) and sensory quality evaluation began after at least 60 days aging.  

A descriptive sensory analysis panel, composed of six trained panelists, evaluated 

the quality of the cheeses.  Panelists were recruited from students of the Department of 

Food Science and Human Nutrition (Ames, IA).  Training consisted of at least 5 hours of 

initial training, followed by an additional hour of refresher training between the first and 

second official tasting period (which were separated by a month).  Panelists were trained 

to evaluate baby Swiss cheese in relation to set quality standards, which served as 

references during training sessions.  For the appearance attributes, photographs of ideal 

and atypical baby Swiss and Swiss cheeses were initially used to assist with training.  To 

assist with eye size evaluation, panelists were provided a plastic standard hole-punched 

square to indicate ideal (“small”) eyes and a penny to indicated “large” eyes (Figure 1).   
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To cement specific aroma, flavor and body and texture defects in the minds of the 

panelists, various cheeses exhibiting attributes and defects were utilized.  The “Cheat 

Sheet” (Figure 2) was used to augment training.  The words at specific locations on the 

15 cm unstructured line scale indicate where panelists were trained with intensity 

references.  During actual cheese evaluation sessions, panelists were provided one blank 

score sheet per sample (Figure 3).  Panelists were expected to remember appearance, 

aroma, flavor, and body and texture attributes, but trigger words on the Cheat Sheets 

served to remind them where on the score sheet to mark the intensity of each cheese 

attribute.   

To prepare cheeses for evaluation by panelists, every cheese was systematically 

cut, manually with a sanitized butcher knife on a sanitized cutting board, into at least 20 

pieces of approximately 1 cm thickness.  The cutter began by making a 1 cm slice at the 

outside round of the cheese, and proceeded to make subsequent slices around the round, 

gradually forming a smaller and smaller square out of the cheese (Figure 4).  Slices were 

laid out sequentially on sanitized, dry trays for photographing (Figures 5 – 8).  When the 

length, width, and height of the cheese were nearly equal, the center-most piece of cheese 

was flipped vertically and the remaining pieces were cut, resulting in three to four 

horizontal slices representing the top and bottom “faces”, and one to two inner-most 

slices.  Based upon their sequential placement on trays, cheese slices were randomly 

selected for bagging and presentation to panelists by using a random number generator.  

A plastic template (3 cm X 2 cm) was placed on each randomly selected master slice to 

make a consistent “principal display” for panelist evaluation.  Selected slices were placed 

into individual re-sealable snack bags, labeled with random 3-digit codes corresponding 
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to the original cheese from which they were cut, and stored at refrigeration temperature 

until the sensory panel.  

For the tasting sessions, in individual booths, panelists were provided individual 

bagged samples, along with a plastic knife for cutting cheese for body and texture and 

taste evaluation, as well as water and green grapes for cleansing the palate.  Panelists 

were instructed to first evaluate visual attributes only on the principal display presented 

to them in the bag.  Panelists then evaluated body and texture, and finally aroma and 

flavor. 

Milk components were analyzed as a 2 × 2 crossover design.  Data were analyzed 

by using the mixed procedure of SAS 9.4 (Cary, NC).  The model included the fixed 

effects of treatment, treatment sequence, and period and the random effect was cow 

(group).  Means were separated by using LSMEANS with the PDIFF option.  Sensory 

attributes of cheese were analyzed by using the mixed model of SAS with the model 

including the fixed effect of treatment.  Means were separated by using LSMEANS with 

the PDIFF option. 

Results and discussion 

No differences were found in composition of milk from cows fed either diet, with 

the exception of milk protein percentage that increased significantly for cows fed RF-

DDGS, without a concomitant change in total milk protein production, and a decrease in 

milk urea nitrogen for cows fed RF-DDGS.  These findings may indicate an increased 

efficiency of protein extraction from feed (Chapter 4, Table 3).  These results are 

consistent with Castillo-Lopez et al. (2014) who found that feeding cows RF-DDGS at 

similar inclusion rates had no effect on milk yield and tended to increase milk protein 
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percentage.  Additionally, Ramirez-Ramirez et al. (2016) found that cows fed RF-DDGS 

produced milk with greater protein percentage and no effect on milk fat percentage, 

which is consistent with our study. They, however, observed increased milk yield for 

those cows fed either DDGS or RF-DDGS.  Finally, our results mirror those reported by 

Mjoun et al. (2010) who saw no effect on milk yield, milk fat percentage, and lactose 

percentage but saw increased protein percentage and decreased milk urea nitrogen.  

Baby Swiss cheese eyes should be glossy, completely round, from 0.3 to 0.8 cm 

in diameter, and evenly distributed throughout the body of the cheese.  Baby Swiss 

should have a mild nutty (roasted hazelnut) and propionic acid aroma and flavor 

character with little to no apparent sour/lactic acid taste.  The body of baby Swiss should 

be somewhat resistant to initial compression between the thumb, forefinger, and middle 

finger (firm), but should break apart between fingers without crumbling or seeming too 

rubbery or dry (corky).  Upon mastication, the texture should be smooth (not grainy or 

rough).  Other than a slight bitter aftertaste, baby Swiss should clean up, leaving no 

fruity, fermented, rancid, yeasty or other foreign flavors on the palate.  

Regarding appearance (Figures 5 – 8), the baby Swiss cheeses were slightly 

atypical.  Compared with the ideal, the cheeses were characterized by a high number 

(overset) of very small to small eyes (0.01 to 0.3 cm in diameter) many of which were 

irregular in shape (including frog mouth, collapsed, and rarely cabbage), and the 

distribution was slightly uneven.  Cheeses were not significantly different from control 

for any attribute except size of eyes (Table 2).  Mean score for eye size of control cheeses 

were closer to ideal than DDGS cheeses (P < 0.05).  Eyes exhibited the typical glossy 

appearance, but some exhibited a wet (free whey) appearance, suggesting incomplete 
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pressing.  Although gas formation appeared normal in most cheeses, several cheeses 

exhibited checks, picks, and rarely, splts or blowholes.  These results are consistent with 

our previous research (Manimanna Sankarlal et al., 2015), where feeding full-fat DDGS 

did not affect quality of baby Swiss cheesed produced when compared with feeding a 

conventional dairy ration to lactating Holstein dairy cows.  

Conclusion 

These results indicate that RF-DDGS can be fed without compromising the 

composition of milk, with the exception of increased protein percentage and decreased 

milk urea nitrogen.  Additionally, there were no differences in suitability of milk used for 

baby Swiss cheese because there was no difference in quality of cheese produced from 

conventionally fed cow milk and milk from cows fed RF-DDGS. 
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Table 1. Effects of feeding RF-DDGS to lactating Holstein dairy cows on 

milk components and yield 

 Treatment   

Item Control RF-DDGS SEM P-Value 

Milk yield, kg/day 15.98 15.85 0.504 0.700 

Milk fat, kg/day 1.27 1.25 0.043 0.416 

Milk fat, % 3.65 3.61 0.096 0.517 

Milk protein, kg/day 1.05 1.08 0.032 0.204 

Milk protein, % 3.01 3.11 0.051 0.002 

Lactose, kg/day 1.63 1.62 0.057 0.884 

Lactose, % 4.62 4.64 0.050 0.819 

Milk total solids, % 12.19 12.28 0.167 0.478 

Somatic cell count 232.57 287.22 168.84 0.718 

Milk urea nitrogen, mg/dL 14.18 12.99 0.285 <0.0001 
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Table 2. Cheese flavor, body and texture, and appearance of eyes.1 

 Treatment   

Flavor Control RF-DDGS SEM P - Value 

Acid 0.99 1.07 0.14 0.683 
Bitter 3.74 3.48 0.34 0.558 
Flat 1.33 1.60 0.23 0.398 
Unclean 1.40 1.86 0.29 0.220 
Body and Texture     
Curdy 7.88 7.46 0.34 0.361 
Mealy/Grainy 5.60 6.44 0.42 0.132 
Pasty 0.66 0.91 0.18 0.298 
Weak 0.89 1.13 0.16 0.254 
Appearance of Eyes     
Amount 7.74 7.83 0.31 0.834 
Distribution 3.65 3.33 0.40 0.556 
Gloss 7.10 7.14 0.22 0.877 
Shape 8.39 8.19 0.28 0.588 
Size 5.92 5.19 0.24 0.021 

Gas Formation 3.82 4.69 0.59 0.266 
1 Values on a 15-cm line scal

 
 

Figure 1.  Evaluation of eye size being conducted by a trained panelist using a 

washable standard hole-punched plastic square. 
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Figure 2.  Baby Swiss Trained Panel Sensory Evaluation Cheat Sheet. 
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Figure 3.  Baby Swiss Trained Panel Sensory Evaluation Sheet. 
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Figure 4.  Visual representation of the process used to systematically slice cheeses 

for photographs and evaluation by trained panelists. 

 
 
 

 
 

Figure 5.  Representative photograph of baby Swiss cheese from milk of cows fed 

control diet in period 1. 
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Figure 6.  Representative photograph of baby Swiss cheese from milk of cows fed 

DDGS diet in period 1. 

 

 

 

 

 

 
Figure 7. Representative photograph of baby Swiss cheese from milk of cows fed 

control diet in period 2. 
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Figure 8. Representative photograph of baby Swiss cheese from milk of cows fed 

DDGS diet in period 2. 
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CHAPTER 7 

IODINE VALUES OF ADIPOSE TISSUE VARIED AMONG BREEDS OF PIGS 

AND WERE CORRELATED WITH PORK QUALITY 

 

E. D. Testroet, C. L. Yoder, A. Testroet, C. Reynolds, M. R. O’Neila, S. M. Lei, D. C. 

Beitz, T. J. Baas 

Reformatted from manuscript submitted to Adipocyte 3.8.2017 

 

Abstract 

Our objectives were to investigate fatty acid composition variation amongst adipose 

tissue sites, breed effects on fat quality, and the relationship of pork fat quality to fresh 

pork quality.  Barrows and gilts (n =347) of five purebred and one commercial crossbred 

line were fed commercial swine diets with DDGS inclusion at 30% (as fed) from 31.8 kg 

body weight until 30-d prior to harvest at 111.4 kg.  Immediately after harvest, hot 

carcass weight was determined, adipose tissue was collected from the back, belly, and 

jowl, and meat samples were taken from the longissimus muscle for evaluation of pork 

quality.  Iodine values (IV) varied between anatomical site and breed.   Jowl fat IV were 

correlated to back and belly fat IV. Minor but significant correlations were observed 

between IV and meat quality characteristics. These results support our hypotheses that 

minor relationships exist between fat and fresh pork quality and that IV vary by 

anatomical location. 

 

Keywords: Iodine Values, Fresh Pork Quality, Adipose Tissue, Fatty Acid 

Composition, Adipose Physiology 

Abbreviations: 
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ADG = average daily gain 

BF = backfat thickness 

DDGS = dried distillers grains with solubles 

FFL = fat-free lean 

%FFL = percentage fat-free lean 

IV = iodine value 

MUFA = monounsaturated fatty acid 

PUFA = polyunsaturated fatty acid 

SCD = stearoyl-CoA desaturase 

SFA = saturated fatty acid 

TAG = triacylglyceride 

 

Introduction 

With the increased production of ethanol, dried distillers grains with solubles 

(DDGS) have become readily available and are often an economical feed source for 

inclusion in the diet of market pigs.  Feeding DDGS, however, may negatively affect 

pork production by increasing the incidence of soft bellies1.  Because DDGS often are 

incorporated into commercial diets for pigs, it is important to understand and evaluate fat 

quality of pigs fed diets containing DDGS.  Indeed, it has been reported that as dietary 

unsaturated fatty acid consumption increased so did adipocyte iodine value (IV; a 

measure of fat quality, with a greater number indicating a greater concentration of 

unsaturated fatty acids and thus softer fat) of three different anatomical locations2. 

Additionally, the relationship between fatty acid composition of pork muscle and adipose 

tissue of different breeds of pigs fed DDGS with a 30-day withdrawal and fresh pork 

quality has yet to be quantified.  Whole carcass near infrared spectroscopy (NIR) analysis 

of fat quality of pigs was performed, adipose IV (fat quality) varied amongst anatomical 

locations, and it was concluded that other factors (e.g, gender, breed) should be 
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analysed3. Additionally, the focus of meat quality metrics has recently shifted from fat 

quantity to fat quality and is considered of paramount importance to consumer acceptance 

of meat products4.  Therefore, our hypotheses were that measures of pork fat and fresh 

pork quality vary among breeds of pigs and that a significant relationship between pork 

fat IV and fresh pork quality exists.  To test these hypotheses, the relationship among 

several measures of fat and pork quality from market pigs fed diets that included DDGS 

at 30% on an as-fed basis with a 30-day withdrawal period was quantified.  Our 

objectives were to: 1) quantify measures of fat quality by determining the fatty acid 

composition and IV of adipose tissues from the jowl fat, belly fat, and 10th rib backfat 

from pigs of five purebred lines and one commercial crossbred line when fed DDGS with 

a 30-day withdrawal period,  2) evaluate the relationship of fat quality of jowl fat to fat 

quality of the belly fat and 10th rib backfat, and  3) determine the relationship between IV 

as a measure of fat quality and fresh pork quality traits including pH, visual firmness, 

marbling, and muscle color. 

Materials and methods 

Animals and diets 

All research was approved by the Iowa State University Institutional Animal Care and 

Use Committee (IACUC ID 5-12-7367-S and 8-14-7851-S).  A total of 347 barrows and 

gilts of five pure breeds and one PIC commercial crossbred line (for breed and gender see 

footnote of Table 1) were delivered to the Iowa Swine Testing Station (Ames, IA) and 

housed in a slatted finishing barn with eight pigs per pen.  Pigs were housed in pens 

consisting of only one breed or genetic line.  The pen average pig weight was 31.8 kg 

when pigs began the performance test.  All pigs were fed a six-phase commercial 
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corn/soy-based diet with DDGS inclusion at 30% on an as fed basis (finishing diet: 0.5% 

choice white grease, 57.8% corn, 7.5% soybean meal, 30% DDGS, 4.2% base mix with 

vitamin and mineral supplement).  Dried distillers grains with solubles were removed 

from the ration for the final 30 days of the finishing period at the request of the meat 

processor (final diet: 0.5% choice white grease, 85.2% corn, 7.5% soybean meal, 6.8% 

base mix with vitamin and mineral supplement). Pigs were individually weighed every 

two weeks and completed the performance test at a minimum weight of 111.4 kg when 

they were transported to Hormel Foods (Austin, MN) for slaughter the following 

morning.   

Carcass evaluation 

After harvest, hot carcass weight was determined.  Backfat thickness, loin muscle area, 

and carcass weight were obtained 24-h post-mortem after a 24-h chill at Hormel Foods 

(Austin, MN).  Standard carcass collection procedures, as outlined in the Pork 

Composition and Quality Assessment Procedures5, were followed to obtain 

measurements of the 10th rib backfat thickness and loin muscle area.  Ultimate pH was 

measured on the 10th-rib of the longissimus muscle by using a pH probe (SFK Ltd; 

Hvidovre, Denmark).  Hunter L score (a measure of light reflectance where lower values 

indicate darker color) was measured on the 10th rib face of the loin after allowing the 

sample to bloom by using a Minolta CR-310 (Minolta Camera Co., Ltd., Japan) with a 

50-mm diameter aperture and D65 illuminant that was calibrated to the white calibration 

plate.  A section of bone-in loin containing the 10-12th ribs was excised from the carcass 

and transported on ice to the Iowa State University Meat Laboratory (Ames, IA) for 

additional pork quality assays.  The 11th and 12th rib sections were cut into 2.54 cm thick 



www.manaraa.com

139 
 

 
 

chops and placed freshly cut side up for 10 min to allow the sample to bloom.  Subjective 

measures of color (1-6), marbling (1-10), and firmness (1-3) were evaluated on the 11th 

rib face by the same panelist according to NPPC procedures5. 

Fat-free lean tissue (FFL) and percentage fat-free lean tissue (%FFL) of carcasses were 

calculated as previously described by the National Pork Producers Council5. 

FFL = 8.588-(21.896 × backfat thickness) + (3.005 × longissimus muscle area) + (0.465 

× carcass weight) 

Fatty acid analysis and iodine values 

Following harvest, upon arrival of the split carcasses to the chillbox and while on 

the slaughter line, subcutaneous adipose tissue samples from all three layers of adipose 

(about 20 g) were excised as soon as possible from 1) the right side of the jowl where the 

carcass was split, 2) the back over the 10th rib, 3) and the middle of the lateral side of the 

belly, and placed in 0.9% NaCl solution at 37°C and transported to Iowa State University 

(Ames, IA) at 37°C for cellularity assays (not reported) and fatty acid analysis.  

Subsamples for fatty acid analysis were frozen at -20°C within six hours of animal death 

until assay.   

To verify that storage at 37°C in 0.9% NaCl solution would not cause oxidation of 

fatty acids, adipose tissue (about 20 g) from the jowl, back over the 10th rib, and middle 

of the lateral side of the belly was excised immediately following harvest (consistent with 

how samples were collected at Hormel Foods) from seven crossbred pigs at the Iowa 

State University Swine Research Farm.  Following on-farm collection, tissues were 

stored either in 0.9% NaCl solution for 6 hours at 37°C and then frozen (-20°C) or 

immediately frozen (-20°C) until analysis.  Analysis of fatty acid composition of adipose 
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tissue confirmed that storage at 37°C up to six hours did not significantly affect any 

measured fatty acid of any anatomical location including unsaturated fatty acids that 

would be most vulnerable to oxidation (e.g., C18:1, C18:2, C18:3; data not shown).   

Total lipids were extracted in triplicate from 2 g of adipose tissue by using a chloroform 

and methanol mixture6, quantified gravimetrically, and methylated directly with acetyl 

chloride and methanol7.  Fatty acid methyl esters were quantified by a gas chromatograph 

(Varian 3800, Agilent Technologies, Palo Alto, CA) equipped with a Supelco SP-2380 (L 

× I.D., 100 m × 0.25 mm) column and a flame ionization detector.  Gas chromatograph 

conditions were as follows: The initial column temperature was 70° C with a hold time of 

four min, and the temperature ramp was 13°C per min with a final column temperature of 

215°C.  Peaks were identified by using commercially available fatty acid methyl ester 

standards (Nu-Chek-Prep Inc., Elysian, MN).  Fatty acid composition was expressed on a 

weight percentage basis.  The activities of the stearoyl-CoA desaturase (Δ9-desaturase or 

SCD) were estimated by calculating the ratio of enzyme substrate to product8-9.  Three 

different indices of SCD activity were calculated with the following formulas: 

Δ9 (16) desaturase index= 100 x [16:1]/([16:1] + [16:0]) 

 Δ9 (18) desaturase index = 100 x [18:1]/([18:1] + [18:0]) 

 Δ9 desaturase index = 100 x ([16:1] + [18:1])/([16:1] + [16:0] + [18:1] + [18:0])  

Iodine values were calculated from the fatty acid composition of fat samples isolated 

from each of the three adipose depots by using the following American Oil Chemists 

Society formula10; 

IV = [C16:1] x 0.95 + [C18:1] x 0.86 + [C18:2] x 1.732 + [C18:3] x 2.616 + 

[C20:1] x 0.785 + [C22:1] x 0.723. 
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Statistical analyses  

All statistical analyses were performed by using SAS version 9.3 (SAS Inst. Inc.; Cary, 

NC).  Correlations between jowl IV and back and belly IV, as well as relationships 

between 10th rib backfat IV and ultimate pH, Hunter L, visual color (1-6), visual marbling 

(1-10), and visual firmness (1-3) were analyzed by using the CORR procedure of SAS.  

In addition to a simple correlation, a simple linear regression was performed to 

accompany the correlation between jowl IV and back and belly IV.      

Grow-finish performance data were analyzed by using the MIXED procedure of SAS 

with a model including breed, sex, contemporary group (sample date), and breed × sex 

interaction as fixed effects. Percentage FFL was used as a covariate to represent the 

components of the measurement that define FFL and to normalize/account for some of 

the variance in adiposity of the different breeds as well as to account for differences in 

growth rate because leaner pigs (higher FFL%) tend to grow slower than do pigs with 

lower FFL%.   

Iodine value and fatty acid data were analyzed by using the MIXED procedure of 

SAS with the model including anatomical location (i.e., back, belly, jowl), breed, sex, 

contemporary group (sample date), and breed × sex, breed × location, and sex × location 

interactions as fixed effects with %FFL as a covariate.     

All means were separated by using an F-protected least-squares means separation 

and reported as the least squares mean plus or minus the SEM.  When significant 

interaction effects were found, P-values were determined by using the SLICE command 

of LSMEANS.  Statistical significance was declared at a P < 0.05, and tendencies were 

declared for P-values greater than 0.05 and less than 0.10. 
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Results and discussion 

Grow-finish performance data 

Performance data expressed as both ADG and %FFL of the five purebred and one 

crossbred line are summarized in Table 1.  For these experimental conditions, Crossbred, 

Duroc, and Yorkshire pigs had the greatest rate of gain, with Chester White being equal 

to all breeds.  Additionally, at harvest, Berkshire had the least %FFL.  Chester White had 

the least backfat thickness whereas Duroc had the thickest, but differences were less than 

a tenth of a cm.  Our data were consistent with those of previous studies that have shown 

leaner breeds of pigs to grow faster than more obese breeds of pigs11-13.  

Sex, breed, and anatomical location effects on fatty acid composition  

Because the objectives of the study were to determine how fat quality varied 

between anatomical locations, concentrations of individual fatty acids in adipose tissue 

are presented in Table 2. For additional comparison, fatty acids have been separated into 

SFA, MUFA, PUFA, and the calculated ratio of PUFA to SFA (P:S) (Table 2).  Although 

there were significant differences in C14:0 concentration in these animals, they are likely 

not of any practical significance because the concentrations are only about one percent of 

the total pork fatty acid content.  Gilts had a higher concentration of PUFA than did 

barrows.  Because gilts are generally leaner than barrows and backfat thickness is 

inversely related to C18:2 concentration (a major PUFA), it is to be expected that gilts 

would have a greater concentration of PUFA14-15.  Additionally, the P:S ratio was similar 

among all breeds except for Durocs that had a significantly lower concentration of PUFA 

than did all other breeds.  The P:S ratio difference in Durocs is discussed in detail in the 

following section.  Finally, P:S ratio varied significantly amongst anatomical locations, 
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with belly fat having the lowest ratio and backfat having the highest ratio, indicating 

belly fat would be less nutritionally desirable from a consumer perspective than backfat.  

Our results that show belly fat has the least P:S ratio are in agreement with previously 

published data that showed belly fat to have a lower P:S ratio than jowl fat when pigs 

were fed a traditional corn/soy diet16.   

Iodine values 

Iodine value is a valuable tool for describing the degree of unsaturation of the 

fatty acids contained in the fat of food.   The practical implication of measuring IV relates 

to the fact that, as IV or unsaturated fatty acids increase, fat becomes softer in texture and 

eventually less desirable to the consumer, producer, and the processor. Additionally, 

although consumers generally desire food with less SFA and more PUFA, increases in 

unsaturated fatty acids (UFA) can negatively affect pork quality in general because pork 

adipose is typically composed of approximately 60% UFA17; so, increasing the UFA 

content through feeding of PUFA beyond 60% can negatively affect oxidative stability 

and promote the generation of undesirable off-odors and -flavors14.   The relationship of 

soft pork fat (soft bellies) with feeding DDGS is a result of the PUFA content of corn oil, 

which is typically more than 60% C18:2.  Pigs are unable to synthesize linoleic 

C18:2Δ9,12 and alpha-linolenic Δ9,12,15 (C18:3) acids; therefore, these fatty acids in adipose 

lipids are derived entirely from the diet18.  

Iodine values at the three adipose depots varied significantly, albeit only by about 

a value of two, with backfat having the greatest IV and belly fat having the least (P < 

0.0001, Table 3).  These data are slightly greater than the average IV of pork adipose 

tissue (64.5 mg iodine/100 g fatty acid)19.  The discrepancy between our results and those 
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of Cromwell et al. (2011) is likely a result of the inclusion of DDGS in the diets of pigs in 

our study because feeding DDGS increases IV of pork fat20.  Indeed, when Cromwell et 

al. (2011) fed pigs 30% DDGS with no withdrawal period, they observed an IV in 

backfat of 77.1.  Likely, the lack of withdrawal period explains the difference between 

our IV data and those of Cromwell et al. (2011) because the IV reported in our study 

would have likely been higher had we not removed DDGS from the finishing diet for the 

last 30 days. It has been reported that up to 30% DDGS could be included in the diet of 

the grower-finisher pig and removed for 3 weeks prior to slaughter without adverse 

effects on pork fat quality21.      

A likely partial explanation for the greater IV (P < 0.05) of backfat can be made 

when considering the activity indices of SCD (Table 4).  Stearoyl-CoA desaturase is 

responsible for the conversion of palmitic acid (C16:0) to palmitoleic acid (C16:1) and 

stearic acid (C18:0) to oleic acid (C18:1), and a greater calculated value for the three 

indices indicates greater SCD activity.  When considering the Δ9 (16) index, a measure of 

the conversion of C16:0 to C16:1, backfat had the lowest index of all locations for both 

barrows and gilts (P < 0.05; Table 4).  Additionally, the Δ9 (18) index, an indicator of the 

conversion of C18:0 to C18:1, of backfat is lower than that of all other locations for both 

barrows and gilts (P < 0.05), with the exception of belly fat of gilts.  Jowl adipose tissue 

had the highest SCD index, an indicator of C16:0 to C16:1 and C18:0 to C18:1, (Table 4) 

but had an intermediate IV of the three assayed adipose depots (Table 3), indicating that 

SCD activity is not the sole contributor to IV.   

Additionally, barrows had a lower IV for the three depots than did gilts (P = 

0.0003; Table 3).  This observation led us to hypothesize that the increased concentration 
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of UFA found in the adipose depots of gilts was a result of estrogenic stimulation of 

SCD.   Estrogen increases SCD activity seven-fold when injected into roosters22.  These 

data do not, however, support the hypothesis that increased concentrations of estrogen in 

gilts compared with that in barrows results in increased activity of SCD because of the 

source of the increase in IV. Increased IV in gilts is a result of increased proportions of 

the dietary-derived fatty acids, C18:2Δ9,12 and C18:3Δ9,12,15 in adipose tissue, rather than 

of desaturase-derived C16:1 Δ9, and C18:1 Δ9.  Rather, the likely explanation is that the 

gilts were leaner than the barrows (backfat thickness of 2.30 cm and 2.46 cm 

respectively, P < 0.0001; loin muscle area of 45.33 and 42.28 cm2, respectively, P < 

0.001; hot carcass weight of 85.82 and 87.20 kg, respectively, P = 0.003; %FFL, Table 1) 

and the dietary PUFAs are “diluted” in barrows by de novo fatty acid synthesis.  Our data 

agree with the hypothesis that leaner pigs have a greater IV, as supported by the negative 

correlation between backfat thickness and backfat IV (r = -0.358, P < 0.001) and the 

positive association between %FFL and IV (r = 0.337, P < 0.001).     

Backfat thickness is inversely related to C18:2, a significant factor in the 

calculation of IV14-15.  This negative correlation between backfat thickness and C18:2 

also was found in our study (r = -0.427, P < 0.001).  The phospholipids of the adipocyte 

membrane are richer in C18:2 than the TAG within the adipocyte.  Consequently, as an 

adipocyte becomes larger, the phospholipid bilayer represents a smaller portion of the 

total lipid in the adipose tissue14 and, thus, a smaller percentage of the total lipid is C18:2.  

Consequently, gilts being leaner than barrows results in a greater IV in their adipose 

resulting from an increased concentration of C18:2.  In addition, larger adipocytes 

contain more products of de novo fatty acid synthesis (i.e., membrane to neutral lipid 
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ratio is smaller), further diluting the effects of dietary PUFA.  The same explanation, we 

presumed, held true for all three adipose depots.  Backfat, however, had the greatest 

concentration of C18:2 when compared with the jowl and belly fats (P < 0.05; Table 2).  

Furthermore, we observed that Duroc pigs also had the lowest IV (Table 3) because of 

the low concentration of dietary-derived PUFA in the adipose tissue (Table 2) in 

combination with low SCD activity (Table 4).   

The results of IV data in the present study (i.e., back is greater than jowl and jowl 

is greater than belly) are supported by previous research that assessed IV of the back, 

belly, and jowl of PIC crossbred medium-weight barrows fed 40% DDGS (9.6% oil)23. 

Our results for IV of the belly may differ from those of other researchers because we 

sampled adipose from the middle of the lateral side of the belly for consistency, but it has 

been shown that the IV of the belly is highly variable depending upon sampling location 

(i.e., dorsal, central, and ventral belly adipose differ in IV)24.  The variability of adipose 

IV amongst anatomical location is also supported by whole body NIR imaging used to 

determine fatty acid composition that showed different anatomical locations in the same 

animal had different IV3.   

The only significant difference found when comparing the adipose tissue IV of 

the six breeds assayed was that the adipose tissue of Durocs had a significantly lower IV 

than did the other five breeds (P < 0.05; Table 3).  Likely the reason for Durocs having 

adipose tissue with the least IV is a genotypic difference resulting in decreased SCD 

activity (Table 4) that was less than other breeds except for Chester White (P < 0.05); a 

phenomenon that occurs both within breeds of a species and between breeds a species25-

26. Several variants of the SCD gene have been identified that showed significant 



www.manaraa.com

147 
 

 
 

association between SCD haplotypes and fatty acid composition in a population of Duroc 

pigs27.  The presence of SNPs in SCD gene resulted in the identification of three different 

genotypes of SCD that accounted for some of the difference in fatty acid profiles that 

were found within this breed of cattle28.  Also, SCD activity varied between breed which 

was also demonstrated in our data (Table 4). 

Relationship of iodine values to fresh loin meat quality 

Pork fat in North America is recommended to have an IV of 74 or less29.  In this 

study, IV of all breeds and sampling locations were under the threshold values for most 

packing plants, even with 30% inclusion of DDGS (as fed basis) until 30 days before 

harvest (Table 3).  Additionally, IV varied by location (back, belly, and jowl); thus, 

sampling site may be of consequence when evaluating pork fat quality.   

Back, jowl, and belly fat IV were analyzed to determine if statistically significant 

correlations between IV and measurements of meat quality existed.  Iodine values from 

all anatomical locations were significantly correlated with laboratory measures of meat 

quality, but jowl fat IV were the most highly correlated with the laboratory measures of 

meat quality shown in Table 5.  Jowl IV were positively correlated to Hunter L values (P 

< 0.05); So, as IV increase, laboratory measures typically associated with a reduction in 

meat quality are impacted negatively.  Additionally, jowl IV were correlated negatively 

with ultimate pH, visual color, visual marbling (P < 0.05) and tended to be correlated 

negatively with visual firmness (P = 0.052).  These correlations, although small, support 

the hypothesis that a relationship between pork fat quality and pork meat quality exists, 

although not all of the correlations may be of practical relevance. 
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Relationship of iodine values of the jowl to iodine values of back and belly fat 

Meat processors have expressed a desire to determine relationship of jowl fat IV with IV 

of backfat and belly fat.  In this research, we identified that jowl fat IV is moderately and 

positively correlated to both back and belly fat IV (P < 0.001; Fig. 1).  Our data, 

however, do not show the IV of the jowl to be as strongly correlated to IV of the belly (r 

= .733)16, possibly owing to sampling location (midsection of the belly versus left side of 

the carcass), which has been shown to influence IV24. 

Conclusion 

Pork from pigs with greater adiposity have a lower IV.  The pork from pigs of all breeds 

had similar IV except that of Durocs, which were lower, suggesting that there may be 

genetic influences on IV.  Additionally, IV, specifically jowl IV, were significantly 

correlated, albeit correlations were small, with several meat quality laboratory 

measurements, indicating that, as IV increases, fresh pork quality decreases.  Because, 

the correlations were small, the practical significance of the relationships seem minor 

rather than major.  It was additionally found that 30% DDGS could be fed to six breeds 

of pig in a six-phase commercial swine diet (excluding the last 30 days) without IV 

exceeding recommended values.  Finally, of value to the pork industry, is the finding 

presented that IV of jowl is only a moderate predictor of IV of other anatomical sites.   
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TABLES AND FIGURES 

Table 1. 

Average daily gain, fat-free lean percentage, and backfat thickness of five purebred and one crossbred line of pigs 

 Breed2  Sex  P-Values 

 
Item 

Berkshire Chester 
White 

Crossbred Duroc Landrace Yorkshire  Barrow Gilt  Breed Sex Breed 
×Sex 

ADG, 
kg 

0.80a 0.83ab 0.85b 0.87b 0.79a 0.87b  0.85b 0.82a  <0.001 0.011 0.151 

 (± 
0.01) 

(± 0.02) (± 0.01) (± 0.01) (± 0.01) (± 0.01)  (± 0.01) (± 0.01)     

FFL, %3 47.94a 50.59bc 53.37d 52.53cd 51.19b 52.39cd  49.33a 53.34b  <0.001 <0.001 0.016 

 (± 
0.41) 

(± 1.15) (± 0.56) (± 0.39) (± 0.44) (± 0.40)  (± 0.24) (± 0.43)     

BF, cm4 2.346ab 2.366a 2.422b 2.493c 2.467c 2.415ab  2.455b 2.382a  <0.0001 <0.0001 0.0004 

 (±0.01) (±0.04) (±0.02) (±0.01) (±0.01) (±0.01)  (±0.01) (±0.01)     

a, b, c, d Within a row and main effect, means without a common superscript differ (P < 0.05).   
1 Standard error in parenthesis below mean value.  
2 n = 347 pigs; number of pigs within each breed (number of barrows, number of gilts): Berkshire, n = 87 (61, 26); Chester 
White, n = 22 (20, 2); crossbred, n = 40 (23, 17); Duroc, n = 76 (40, 36); Landrace, n = 52 (22, 30); Yorkshire, n = 70 (47, 23).   
3 ADG = average daily gain. 
4FFL = fat-free lean percentage. 
5 BF = backfat thickness in cm. 
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a, b, c, d Within a row and main effect, means without a common superscript differ (P < 0.05). 
1 Standard error in parenthesis below mean value.  Values are expressed as a weight percentage.  
2 n =347 pigs, number of pigs within each breed shown in footnote 2 of Table 1. 
3 Ratio of polyunsaturated to saturated fatty acids. 

Table 2. 

Fatty acids from adipose tissue as influenced by sex, breed of pig, and anatomical location1 
 Sex  Breeds 2  Location  P - Values 
Fatty 
acid 

 
Barrow 

 
Gilt 

  
Berkshire 

Chester 
White 

 
Crossbred 

 
Duroc 

 
Landrace 

 
Yorkshire 

  
Back 

 
Belly 

 
Jowl 

  
Sex 

 
Breed 

 
Location 

12:0 0.04 0.04  0.04ab 0.06c 0.03a 0.04b 0.03a 0.04a  0.036a 0.044b 0.037a    0.279 0.001 0.001 
 (± 0.01) (± 0.01)  (± 0.002) (± 0.005) (± 0.003) (± 0.002) (± 0.002) (± 0.002)  (± 0.002) (± 0.002) (± 0.002)    
14:0 1.09 1.08  1.03a 1.20c 1.06a 1.11b 1.05a 1.04a  1.03a 1.15c 1.07b   0.477 <0.001 <0.001 
 (± 0.008) (± 0.01)  (± 0.01) (± 0.03) (± 0.02) (± 0.01) (± 0.01) (± 0.01)  (± 0.01) (± 0.01) (± 0.01)    
16:0 21.68 21.48  21.45a 22.08b 21.41a 21.88b 21.44a 21.22a  21.23a 22.24b 21.27a   0.130 <0.001 <0.001 
 (± 0.06) (± 0.11)  (± 0.11) (± 0.27) (± 0.14) (± 0.10) (± 0.11) (± 0.10)  (± 0.09) (± 0.09) (± 0.09)    
16:1 2.24b 2.06a  2.27d 2.42d 1.95a 2.02ab 2.09bc 2.14c  1.88a 2.31b 2.25b <0.001 <0.001 <0.001 
 (± 0.02) (± 0.04)  (± 0.04) (± 0.09) (± 0.05) (± 0.03) (± 0.04) (± 0.03)  (± 0.03) (± 0.03) (± 0.03)    
17:0 0.32 0.31  0.30a 0.34bc 0.31a 0.30a 0.33c 0.31ab  0.34b 0.30a 0.30a   0.325 0.001 <0.001 
 (± 0.003) (± 0.006)  (± 0.006) (± 0.01) (± 0.01) (± 0.01) (± 0.01) (± 0.01)  (± 0.01) (± 0.01) (± 0.01)    
17:1 0.25b 0.23a  0.24bc 0.26cd 0.23b 0.21a 0.26d 0.26cd  0.25b 0.23a 0.25b   0.006 <0.001 <0.001 
 (± 0.002) (± 0.01)  (± 0.01) (± 0.01) (± 0.01) (± 0.004) (± 0.01) (± 0.01)  (± 0.004) (± 0.004) (± 0.004)    
18:0 10.62 10.63  10.07a 10.28ab 10.74b 11.88c 10.54b 10.25a  10.89b 10.94b 10.04a   0.966 <0.001 <0.001 
 (± 0.06) (± 0.10)  (± 0.11) (± 0.26) (± 0.13) (± 0.09) (± 0.11) (± 0.10)  (± 0.08) (± 0.08) (± 0.09)    
18:1c9 39.33b 38.80a  39.51c 37.21a  39.54c 38.88b 39.52c 39.70c  37.92a 38.87b 40.40c   0.010 <0.001 <0.001 
 (± 0.10) (± 0.17)  (± 0.17) (± 0.42) (± 0.22) (± 0.15) (± 0.17) (± 0.16)  (± 0.14) (± 0.14) (± 0.14)    
18:2n6 17.79a 18.90b  18.41b 19.58c 18.32b 17.26a 18.26b 18.24b  19.95b 17.58a 17.51a <0.001 <0.001 <0.001 
 (± 0.12) (± 0.21)  (± 0.21) (± 0.51) (± 0.27) (± 0.19) (± 0.21) (± 0.19)  (± 0.17) (± 0.17) (± 0.17)    
18:3n3 0.53a 0.59b  0.57c 0.64d 0.54ab 0.52a 0.55bc 0.55bc  0.60b 0.54a 0.54a <0.001 <0.001 <0.001 
 (± 0.004) (± 0.01)  (± 0.01) (± 0.02) (± 0.01) (± 0.01) (± 0.01) (± 0.01)  (± 0.01) (± 0.01) (± 0.01)    
20:0 0.22 0.17  0.20 0.19 0.13 0.26 0.20 0.18  0.23 0.17 0.18   0.470 0.641 0.533 
 (± 0.03) (± 0.05)  (± 0.05) (± 0.13) (± 0.07) (± 0.05) (± 0.05) (± 0.05)  (± 0.04) (± 0.04) (± 0.04)    
20:1n9 0.73b 0.70a  0.72bc 0.65a 0.71b 0.74cd 0.72bc 0.76d  0.73b 0.64a 0.78c   0.001 <0.001 <0.001 
 (± 0.01) (± 0.01)  (± 0.01) (± 0.03) (± 0.01) (± 0.01) (± 0.01) (± 0.01)  (± 0.01) (± 0.01) (± 0.01)    
20:2n6 0.81 0.81  0.82b 0.76a 0.84b 0.84b 0.77a 0.84b  0.88c 0.71a 0.85b   0.963 <0.001 <0.001 
 (± 0.01) (± 0.01)  (± 0.01) (± 0.03) (± 0.01) (± 0.01) (± 0.01) (± 0.01)  (± 0.01) (± 0.01) (± 0.01)    
20:3n3 0.108a 0.113b  0.112b 0.117bc 0.107b 0.097a 0.120c 0.109b  0.113b 0.107a 0.112b   0.048 <0.001 0.011 
 (± 0.001) (± 0.002)  (± 0.002) (±  0.01) (± 0.002) (± 0.002) (± 0.002) (± 0.002)  (± 0.001) (± 0.002) (± 0.002)    
20:4n6 0.27a 0.30b  0.29b 0.30bc 0.28b 0.24a 0.32c 0.30b  0.29b 0.30c 0.28a <0.001 <0.001 <0.001 
 (± 0.003) (± 0.005)  (± 0.004) (± 0.01) (± 0.01) (± 0.004) (± 0.004) (± 0.004)  (± 0.004) (± 0.004) (± 0.004)    
22:6n3 0.13 0.13  0.15c 0.14bc 0.11a 0.11a 0.13b 0.14c  0.13 0.13 0.13   0.958 <0.001 0.471 
 (± 0.002) (± 0.003)  (± 0.003) (± 0.01) (± 0.003) (± 0.003) (± 0.003) (± 0.003)  (± 0.002) (± 0.002) (± 0.002)    
Other  3.84 3.66  3.81 3.80 3.69 3.61 3.66 3.94  3.51a 3.74ab 4.00b   0.336 0.674 0.013 
 (± 0.09) (± 0.16)  (± 0.16) (± 0.39) (± 0.20) (± 0.14) (± 0.16) (± 0.15)  (± 0.13) (± 0.13) (± 0.13)    
SFA 33.09 33.71  33.09ab 34.14c 33.68bc 35.47d 33.60bc 33.04a  33.75b 34.85c 32.91a   0.255 <0.001 <0.001 
 (± 0.10) (± 0.19)  (± 0.19) (± 0.46) (± 0.24) (± 0.17) (± 0.19) (± 0.17)  (± 0.15) (± 0.15) (± 0.15)    
MUFA 42.55b 41.79a  42.74c 40.53a 42.43c 41.85b 42.60c 42.85c  40.77a 42.005b 43.68c   0.001 <0.001 <0.001 
 (± 0.10) (± 0.19)  (± 0.18) (± 0.46) (± 0.24) (± 0.17) (± 0.19) (± 0.17)  (± 0.15) (± 0.15) (± 0.15)    
PUFA 19.65a 20.85b  20.35b 21.54c 20.20b 19.07a 20.14b 20.17b  21.97b 19.36a 19.41a <0.001 <0.001 <0.001 
 (± 0..12) (± 0.22)  (± 0.22) (± 0.55) (± 0.29) (± 0.20) (± 0.22) (± 0.21)  (± 0.18) (± 0.18) (± 0.18)    
P:S3 0.59a 0.63b  0.62b 0.64b 0.61b 0.54a 0.61b 0.62b  0.66c 0.57a 0.60b <0.001 0.001 <0.001 
 (± 0.005) (± 0.008)  (± 0.01) (± 0.02) (± 0.01) (± 0.01) (± 0.01) (± 0.01)  (± 0.01) (± 0.01) (± 0.01)    
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Table 3. 
Iodine values of adipose tissue as influenced by anatomical location, sex, and breed of pig1 

 
Location 

  
Sex 

  
Breed 

 P-Values 
   Location Sex Breed 

Back 71.07c  Barrow 68.72a  Berkshire 70.09b  <0.001 0.003 <0.001 
 (± 0.30)   (± 0.18)   (± 0.33)     
Belly 68.01a  Gilt 70.15b  Chester White 70.40b     
 (± 0.30)   (± 0.33)   (± 0.80)     
Jowl 69.21b     Crossbred 69.55b     
 (± 0.30)      (± 0.42)     
      Duroc 67.19a     
       (± 0.30)     
      Landrace 69.56b     
       (± 0.33)     
      Yorkshire 69.81b     
       (± 0.30)     

a, b, c,  Within a column, means without a common superscript differ (P < 0.05). 
1 Standard error in parenthesis below mean value.  Values are expressed as milligrams iodine per 100 grams of lipid   
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a, b, c, d, e Within a row and main effect, means for breeds without a common superscript differ (P < 0.05). 
1 Standard error in parenthesis below mean value.  
2 n =347 pigs, number of pigs within each breed shown in footnote 2 of Table 1. 
3 Δ9 (16) = Δ9 (16) desaturase index = 100 * [16:1]/([16:1]+[16:0]).  
4 Δ9 (18) = Δ9 (18) desaturase index = 100 * [18:1]/([18:1]+[18:0]).  
5 Δ9-desaturase = Δ9 desaturase index = 100 * ([16:1] + [18:1])/([16:1] + [16:0] + [18:1]+ [18:0]).  
.

Table 4. 
Indices of stearoyl-CoA desaturase activity from adipose tissue as influenced by breed of pig and anatomical location within sex1 
  Breeds 2  Location  P - Values 
   

Berkshire 
Chester 
White 

 
Crossbred 

 
Duroc 

 
Landrace 

 
Yorkshire 

 Back Belly Jowl   
Breed 

Location X 
Sex Indices   Barrow Gilt Barrow Gilt Barrrow Gilt  

Δ9 (16)3  9.55d 9.75cd 8.33a 8.41a 8.84b 9.11bc  8.27a 7.91a 10.01d 8.72c 9.65b 9.44b  <0.001 <0.001 
  (±0.13) (±0.31) (±0.16) (±0.11) (±0.13) (±0.12)  (±0.11) (±0.17) (±0.11) (±0.17) (±0.11) (±0.17)    
Δ9 (18)4  79.68c 78.33b 78.60b 76.56a 78.91b 79.50c  77.66a 77.76a 78.61b 77.41a 79.91c 80.25c  <0.001 <0.001 
  (±0.19) (±0.48) (±0.25) (±0.17) (±0.19) (±0.18)  (±0.17) (±0.26) (±0.17) (±0.26) (±0.17) (±0.26)    
Δ9-
desaturase5 

 57.00bc 55.00a 56.35b 54.76a 56.54b 57.10c  55.25ab 55.47bc 56.08c 54.62a 57.49d 57.84d  <0.001 <0.001 

  (±0.19) (±0.47) (±0.24) (±0.17) (±0.19) (±0.18)  (±0.17) (±0.26) ± (0.17) (±0.26) (±0.17) (±0.26)    
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Table 5. 

Correlation of iodine values of jowl fat and of meat quality metrics 
Item Value1 Std. Dev. r P - Value2 

pH 5.65 0.18 -0.18 0.001 
Hunter L 47.86 3.28 0.22 < 0.001 
Visual color 2.89 0.86 -0.27 < 0.001 
Visual marbling 1.90 0.89 -0.24 < 0.001 
Visual firmness 2.27 0.85 -0.11 0.052 

1 Mean value n = 315 pigs. 
2 P-values for difference from zero.
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Figure Legends 

Figure 1. Relationship of iodine values of jowl adipose tissue of six breeds of pig to 

iodine values of back and belly adipose tissue.  Numbers are expressed in grams iodine 

consumed per 100 grams of lipid.  P-value is for difference from zero.  (a) Relationship 

of iodine value of back adipose tissue and iodine value of jowl adipose tissue.  (b) 

Relationship of iodine value of belly adipose tissue and iodine value of jowl adipose 

tissue. 
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CHAPTER 8: SUMMARY AND CONCLUSIONS 

Summary 

 When cows were fed FF-DDGS (~13% fat; 20% inclusion rate, DM basis), feed 

efficiency was markedly decreased in all metrics measured.  Furthermore, milk fat 

depression was observed (0.5 percentage points) when cows were fed FF-DDGS at a 10% 

inclusion rate (DM basis), despite recommendations that distillers grains could be 

effectively incorporated into the diet of the lactating dairy cow at up to a 20% inclusion 

rate (DM basis) (Schingoethe et al., 2009). Feeding 10% FF-DDGS also decreased ECM 

and FCM yields because of the decreased milk-fat production despite the rations 

containing only 2.5 percentage points less forage than the recommended 50% forage 

inclusion rate to prevent milk fat depression (Kalscheur, 2005). These results are likely 

the result of a combination of factors resulting from the relatively high concentration of 

PUFA in the distillers grains, resulting in greater PUFA intake and likely inhibiting de 

novo milk fat synthesis in addition to inhibiting fiber digestion. The results of feeding 10 

and 20% FF-DDGS to lactating dairy cows indicate that a 20% dry matter inclusion rate 

is not advisable when the source of DDGS is very high in fat concentration (i.e., greater 

than 13% fat), and that even a 10% inclusion rate can have detrimental effects on 

production parameters.  However, when cows were fed 20% RF-DDGS (~6% fat) with 

ruminally protected lysine, no negative effects on production were observed and protein 

percentage was increased accompanied by a decrease in milk urea nitrogen, indicating 

that cows fed RF-DDGS may more effectively utilize dietary protein in agreement with 

previous research (Mjoun et al., 2010).  
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 No difference in quality of milk was detected by a trained sensory panel when 

milk from cows fed 0, 10, and 25% FF-DDGS was evaluated over a period of seven days.  

As expected, concentration of milk unsaturated fatty acids increased as DDGS inclusion 

rate increased, but, despite this change in composition, no change in oxidative stability or 

development of oxidative off-flavors was detected as determined by testing peroxide 

value and trained sensory panel. These results indicate that, although feeding DDGS 

alters composition of milk, quality was unaffected. 

 Inclusion of both FF- and RF-DDGS in the rations of dairy cows producing milk 

meant to be used for production of baby Swiss cheese did not influence quality of cheeses 

produced.  Rather, it seems that environmental contamination, not originating from 

DDGS, is more likely to cause introduction of microorganisms involved in secondary 

fermentation that lead to the late-blowing defect.   

 Finally, it was found that pigs fed FF-DDGS with a 30-d withdrawal period had 

adipose tissue that varied in fatty acid composition by anatomical location.  There was a 

significant but moderate correlation between IV of one anatomical site and another.  

Additionally, IV of pork fat from leaner pigs was greater than IV of pork fat from pigs 

with more adiposity.  Even though none of the IV exceeded the maximal threshold 

allowed by processors, statistically significant but moderate correlations between the IV 

of pork fat and measurements of meat quality occurred, indicating that as IV increases 

pork would likely be deemed less desirable to consumers.  

Conclusions and future research recommendations 

 Because of the recent shift in composition of DDGS, in particular with regard to 

fat content, FF-DDGS are not likely to be available in the future.  However, the vast 
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majority of research conducted to date focused on the effects of feeding FF-DDGS. There 

is a need for research in the beef, dairy, and pork industry to examine the effects of 

feeding RF-DDGS on not only production parameters, but also on feeding value, and 

equally important on quality of products derived from animals fed RF-DDGS (e.g., 

sensory attributes, consumer acceptability, quality as perceived by the processor).  Future 

research should focus on investigating all aspects of feeding programs, from production 

parameters through product quality, which will require multidisciplinary collaborative 

research projects.  
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Abstract 

Sizes of adipocytes from adipose tissue of mature animals form a bimodal distribution; 

thus, reporting mean cell size is misleading.  The objectives of this study were to develop 

a robust method for testing bimodality of porcine adipocytes, describe the size 

distribution with an informative metric, and statistically test hypertrophy and appearance 

of new small adipocytes, possibly resulting from hyperplasia or lipid filling of previously 

divided fibroblastic cells.  Ninety-three percent of adipose samples measured were 

bimodal (P < 0.0001); therefore, we describe and propose a method of testing hyperplasia 

or lipid filling of previously divided fibroblastic cells based upon the probability of an 

adipocyte falling into two chosen competing “bins” as adiposity increases. We also 

conclude that increased adiposity is correlated positively with an adipocyte being found 

in the minor mode (r = 0.46) and correlated negatively with an adipocyte being found in 

the major mode (r = -0.22), providing evidence of either hyperplasia or lipid filling of 

previously divided fibroblastic cells.  We additionally conclude that as adiposity 
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increases, the mode of the major distribution of cells occurs at a larger diameter of 

adipocyte, indicating hypertrophy.  

Introduction 

It is well established that populations of adipocytes from adipose tissue of adult 

animals have a bimodal distribution and are, thus, not normally distributed 1-9. Even so, to 

date the standard reported metric of cell size is typically the mean cell size of the 

distribution.  This reporting occurs despite recommendations by Rogers et al.7 that the 

normality assumption, at least in Zucker rats, is erroneous.  We also believe that it is 

inappropriate to use a single grand mean cell size as representative of adult adipose cell 

size distribution specifically because the presence of a secondary mode in the range of 

measured smaller cells artificially lowers the mean and may be misleading. One would 

expect an animal with a greater mean adipocyte cell size to have more adiposity, which 

may not be the case if the cells are bimodally distributed.   

Many methods have been proposed to arrive at a simple hypothesis test for 

bimodality. A discussion of some of them is included in Jackson et al.10. All of those 

methods discussed rely on the assumption of normality under both the null and 

alternative hypotheses. As discussed above, however, this condition is not met in our 

situation. In spite of this condition, we have the good fortune of data whose empirical 

distribution is such that a simple and robust hypothesis can be used. This method is 

described in detail in the Materials and Methods section below. No model distribution is 

necessary using this method.  

The objective of this study was to characterize populations of adipocytes of 

adipose tissue of five different purebred lines of pigs of varying adiposity and to develop 
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an appropriate statistical method of describing these populations based on the hypothesis 

that a single grand mean is an inappropriate metric for describing adipocyte populations.  

We now proceed to the details of this study. 

Materials and methods 

Animals and diets 

All research was approved by the Iowa State University Institutional Animal Care 

and Use Committee (IACUC).  A total of 149 barrows and gilts of five different breeds 

(Berkshire = 40 barrows and 25 gilts; Chester White = 15 barrows and 2 gilts; Duroc = 7 

barrows and 4 gilts; Landrace = 6 barrows and 17 gilts; Yorkshire = 17 barrows and 16 

gilts) were delivered to the Iowa Swine Testing Station (Ames, IA) and housed in a 

commercial slatted finishing barn with eight pigs randomly assigned per pen.  Pigs began 

the performance test when the pen average pig weight was 31.8 kg.  All pigs were fed a 

six-phase commercial corn/soy based diet with dried distillers grains with solubles 

(DDGS) inclusion at 30% of dietary DM.  Dried distillers grains with solubles was 

removed from the ration for the final 30 days of the finishing period.  Pigs were removed 

from the performance test at a minimal weight of 111.4 kg and transported to Hormel 

Foods (Austin, MN) for slaughter the following morning.   

Adipose tissue cellularity 

Following harvest and upon arrival of the split carcasses to the chillbox, adipose 

tissue samples (about 20 g) were excised while still warm from the jowl, the back over 

the 10th rib, and the midsection of the belly, placed in 0.9% NaCl solution at 37°C, and 

transported to Iowa State University (Ames, IA) at 37°C for cellularity assays.  An 

approximately 200 mg section of fresh adipose tissue from the back (outer and middle 
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subcutaneous fat), belly, and jowl were fixed in 5 mL of 2% osmium tetroxide in 50 mM 

collidine hydrochloride buffer at pH 7.6 as described by Hirsch and Gallian11 

approximately 6 hours post-slaughter.  Connective tissue debris was solubilized with 8 M 

urea as described by Etherton et al.12.  Adipocytes were freed by washing with a 0.9% 

NaCl solution containing 0.01% Triton X-100, pH 10, through a 250-µm nylon mesh 

filter and collected onto a 20-µm nylon mesh filter.  Mean and mode adipocyte cell size 

and cellularity (cells per gram of tissue) were determined by using a Coulter Counter 

(Beckman-Coulter, Brea, CA).  The sample diluent was 0.9% NaCl containing 0.01% 

Triton X-100, pH 10, and the Kd (diameter calibration) of the machine was calibrated to 

631.48.  Samples were sized and counted by using a 400 µm aperture into 300 size bins 

ranging from 20 to 240 µm and counted in triplicate.  The mean of the three 

measurements was used.  The coefficient of variation between replicates was less than 

five percent.   

Robust hypothesis testing of adipose bimodality and hyperplasia or lipid filling of 

previously divided fibroblastic cells  

Formal testing of bimodality of each distribution of adipocytes was performed by 

identifying two(essentially) equal-width bins (Fig. 2A; i.e., coarsening the data), with bin 

1 containing the with the suspected minor mode and bin 2 containing an area assumed to 

separate the major and minor modes to be used for comparison.  Bin 1 contained 

measured adipocytes with a diameter between 25.0125 and 40.1052 µm.  Bin 2 contained 

measured adipocytes with a diameter between 50.1565 and 65.3792 µm. For the kth cell, 

we defined the event [Xk = 1] with probability p = Pr[Xk = 1]  if that cell’s diameter falls 



www.manaraa.com

166 
 

 

in bin 1 and the event [Xk = 0] with probability 1 - p = Pr[Xk = 0]   if it falls in bin 2. The 

following natural estimator of (p) was used: 

∑
=

==
N

k

kX
N

Xp
1

1)
     (1) 

As mentioned in the introduction, the data we are analyzing has the fortuitous 

property of having the structure shown in Fig. 1A. Specifically, there are two regions 

that, together, suggest bimodality (bins 1 and 2). Furthermore, because they have 

approximately equal width, under the unimodal assumption, it must be that the 

probability associated with bin 1 is no greater than that of bin 2.  By focusing on only 

these two bins, the size of our data set is reduced to only data included in these bins. This 

sacrifice in the amount of available data is, however, offset by the simplicity of the 

associated random variables defined in relation to (1) above. These are simple 0/1 

Bernoulli random variables. The P-value estimator given by (1) is simply a scaled 

binomial random variable that, for sufficiently large N, can be approximated as a normal 

random variable by invoking the Central Limit Theorem. No assumption of normality, or 

for that matter any population distribution, is needed.  

The hypothesis test for distribution bimodality is simply: 

H0: p = 0.5   versus   H1: p > 0.5. 

Because the sample size, N, associated with the number of cells falling in either of 

the two bins was on average on the order of 6,600 adipocytes counted for a given test, the 

Central Limit Theorem clearly applies and results in the following standard normal test 

statistic (Z): 

N

p
Z

/5.0

5.0−=
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      (2) 
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There are a number of tests for multimodality. One is the likelihood ratio test13 

that requires specification of the form of the distributions.  Another is the dip test14 which 

does not require  a priori specification and, instead, uses the uniform distribution as the 

least favorable prior. Both tests are of a general nature in the sense that there is no a 

priori knowledge of any specifics associated with potential multimodality. Our data 

however, strongly support specific information.  Specifically, our data show that the 

potential minor mode is well separated from the major mode and that the locations of the 

minor mode and saddle point are known. In this case, the aforementioned tests can be 

replaced by the much simpler test we used in this research. 

Other statistical analyses 

All statistical analyses other than the test for bimodality were performed by using 

SAS version 9.3 (SAS Inst. Inc., Cary, NC).  Correlations were analyzed by using the 

CORR procedure of SAS.   

Adipocyte cellularity (mean cell size, mode cell size, and adipocytes per gram of 

adipose tissue) data were analyzed by using the MIXED procedure of SAS with sampling 

location, breed, sex, sample date (contemporary group), and the interactions of breed × 

location and sex × location as fixed effects with percentage fat-free lean tissue (%FFL) as 

a covariate.    

All means were separated by using an F-protected least-square means separation 

and reported as the mean plus or minus the SEM.  When significant interaction effects 

were found, P-values were determined by using the SLICE command of LSMEANS.  

Statistical significance was declared at a P < 0.05. 
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Results and discussion 

Bimodality of the adipocyte size distribution 

For equal representation of lean and fat animals, these data were generated from 

breeds of growing pigs of varying adiposity as shown in Table 1.  Evidence that sample 

mean adipocyte diameter is an inappropriate metric and that the data are bimodally 

distributed is shown in Fig. 3. Clearly, the most probable cell diameter, which one would 

expect to be the sample mean in a unimodal distribution, does not occur in the region of 

the grand mean (~91 µm averaged across all breeds and locations) but rather in the 

location of the mode of the major distribution of adipocytes (~112 µm averaged across all 

breeds and locations; Fig. 1D).  The maximal probability of a particular adipocyte 

diameter that is located in the minor mode occurs quite near where we would expect to 

see it based on the minor mode data shown in Table 2 and Fig. 1D.   

The cells that contribute to the cellularity of the minor mode could be of three 

distinct origins: 1) Nondifferentiated stem cells become differentiated to preadipocytes 

that begin to accumulate lipid and come to be found in the minor mode, 2) Proliferative 

pre-adipocytes from embryonic development may begin to add lipid and come to be 

found in the minor mode (~8 µg  to 34 µg of lipid), and 3) Mature cells may proliferate 

and appear in either the major or minor mode [15].  The cells found in the major mode 

are of two types: 1) Mature adipocytes that have accumulated enough lipid 

(approximately 144 µg or more of lipid) to be found in the major mode and 2) Mature 

adipocytes that have proliferated but are still large enough to be found in the major mode.  

It is, however, beyond the scope of this methods paper to investigate the origin of the 

small adipocytes that appear in the minor mode.   
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Additionally, reporting sample mean cell size is only appropriate if cells are 

unimodally distributed.  In carrying out the hypothesis test for bimodality described in the 

Materials and Methods section, we observed that, indeed, 93.18% of the 455 measured 

adipose tissue samples had a bimodal distribution of adipocytes at a P-value < 0.05.  The 

additional 6.82% of samples that did not test positive for being bimodal were visually 

inspected to verify that no secondary mode existed.  These samples were, however, not a 

normal distribution.  So, sample mean adipocyte diameter is not the appropriate metric to 

use for describing distributions of adipocyte diameters.  Thus, we propose using 

adipocyte diameter of the mode of the minor (Table 2) and major (Table 3, Fig. 1D) 

distributions of cells as a metric for reporting cell distributions for future work.  For sake 

of comparison to traditional metrics of adipocyte size, we also have included grand mean 

adipocyte cell sizes in Table 4.  

Adipose tissue cellularity and mean and mode cell size 

Cellularity, defined as the number of cells (adipocytes) per gram of adipose tissue, 

of backfat was significantly and negatively correlated to backfat thickness (r = -0.515; 

Table 5).  Adipose tissue cellularity (Table 6) was consistent with, but slightly lower 

than, cellularity data reported for 114 kg pigs sampled from dorsal subcutaneous neck 

adipose tissue by Mersmann and Macneil5 (1.81 x 106 cells x gram-1).  A possible 

explanation for our data being slightly lower is that the adipose of the dorsal neck may 

differ from the adipose of the ventral neck.  Significant breed effects in cellularity were 

found when comparing back, belly, and jowl adipose depots (P = 0.0004, P < 0.0001, and 

P = 0.0209, respectively) across breeds (Table 6).  Differences also were found when 

comparing anatomical locations within a breed, with the belly always having the 



www.manaraa.com

170 
 

 

numerically greatest cellularity and back always having the numerically least cellularity.  

It is also worth noting that most of the measured depots had a fairly large standard error 

of mean (SEM) indicating that there is considerable variability in the cellularity of these 

measured depots both within and across breeds.   

Significant differences for mean adipocyte cell size were only found in belly fat 

(P = 0.0007) across breeds, with Duroc pigs having the smallest mean adipocyte size and 

Berkshire pigs having the largest.  Within Berkshire pigs, the mean cell size of jowl fat 

adipocytes was significantly smaller in diameter those that in belly and backfat (P < 0.05; 

Table 4).   

The adipocyte diameter of the mode of the minor distribution of cells (Table 2; 

modes described in Fig. 1B) did not vary significantly across breeds but varied 

significantly within a breed.  The general trend of adipocyte diameter of the minor mode 

was for backfat adipocytes in the minor distribution of cells to be of the smallest diameter 

and belly fat adipocytes of the minor mode always to be of the largest diameter.  It is, 

however, unclear if the differences in adipocyte diameter of the mode of the minor 

distribution is of practical significance because the differences were 4 µm or less and 

because the number of cells that fall into the minor mode is very small in comparison to 

the cells found in the major mode.  In addition, adipocyte diameter of the minor mode is 

not significantly correlated to adiposity as measured by backfat thickness (data not 

shown).  Therefore, the differences in adipocyte diameter of the minor mode are not 

likely of any physiological consequence.  Adipocyte diameter of the mode of the minor 

distribution of cells was also significantly different for barrows and gilts (approximately 

1.6 µm) which, again, is likely not of any physiological significance. 
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The adipocyte diameter of the mode of cells found within the major distribution 

(Table 3) varied significantly within both a breed and anatomical location within sex.  As 

expected, Durocs, one of the leanest breeds of pigs (Table 1), had the smallest adipocyte 

diameter for the mode of the major distribution of cells (Table 3).  Interestingly, 

Yorkshire and Chester White pigs that were equally as lean as Duroc pigs had an 

intermediate adipocyte diameter for the mode of the major distribution of cells, indicating 

that adiposity is not the only factor influencing the adipocyte diameter of the mode of the 

major distribution of adipocytes in Duroc pigs (Table 3).  The largest adipocyte diameter 

of the mode of the primary distribution of cells was found in Berkshire pigs, the breed 

with greatest adiposity in this experiment.  It seems that Duroc pigs may be somewhat of 

an anomaly as based on this cellularity-related data, likely as a result of genetic 

differences.  When Duroc pigs are ignored, the range between the smallest and largest 

major mode cell size is only about 5 µm, which might be of little physiological 

consequence (Table 3).   

Adipose tissue hypertrophy and appearance of small adipocytes in the minor mode 

Understanding how adipose tissue development and growth is regulated is of great 

clinical importance16.  Adipose tissue growth occurs by hypertrophy, hyperplasia, or both 

hypertrophy and hyperplasia15. Understanding the mechanism of adipose tissue growth is 

important to basic science and relevant to animal and human health. Adipose growth by 

hypertrophy is linked with inflammation, fibrosis, and insulin resistance17, whereas 

adipose hyperplasia is linked with increased insulin sensitivity17-18. Because the adipose 

samples we studied were distributed bimodally, we investigated if the nature of this 

bimodal distribution was evidence of hypertrophy, hyperplasia, or both hypertrophy and 
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hyperplasia occurring in pigs of market weight.  Because backfat thickness was the 

indicator of adiposity, it would be inappropriate to correlate attributes of backfat adipose 

to any depot other than the back (Table 5).  As would be expected, mean and mode cell 

size of the back adipose tissue is correlated negatively to the cellularity of backfat 

adipose, and adipocyte cell size is positively correlated with backfat thickness, indicating 

that, as an animal becomes larger, its adipose tissue is filled with larger adipocytes and 

fewer adipocytes per gram of tissue (Table 5).  When comparing the adipocyte diameter 

of the minor mode to backfat thickness (Table 5), we found no significant correlation 

between the two measurements, indicating that the adipocyte diameter of the minor mode 

is not dependent on the adiposity of the pig.  The ratio of the adipocyte diameter of the 

minor mode to the adipocyte diameter of the major mode (rd) was significantly and 

negatively correlated to backfat thickness (Table 5) and, because the adipocyte diameter 

of the minor mode is not dependent on the adiposity of the pig, this negative correlation 

indicates that as the backfat thickness increases the adipocyte diameter of the major mode 

becomes larger and the minor distribution of cells becomes more well defined (i.e., more 

adipocytes represented by the minor mode; Fig. 1C).   

Next, we computed an estimate of the ratio of probabilities (rp), the probability of 

an adipocyte being in the minor mode divided by probability of an adipocyte being in the 

major mode. A significant and positive correlation (Table 5) between rp and backfat 

thickness indicates that as adiposity increases the probability of an adipocyte being found 

in the minor mode is greater, which is consistent with adipose hyperplasia or 

differentiation of pre-adipocytes into nascent adipocytes.  The correlation of rd and rp to 

backfat thickness supports the idea that in the finishing phase these pigs were undergoing 
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adipose growth via both hypertrophy and hyperplasia, differentiation of pre-adipocytes to 

nascent adipocytes, or lipid filling of previously divided fibroblastic cells.  The histogram 

of probabilities associated with adipocyte diameters (Fig. 3a) indicates that the maximal 

adipocyte diameter is limited to approximately 240 µm because the probability of finding 

an adipocyte of that size or greater drops to nearly zero.  Thus, the limit of hypertrophy 

seems to occur when porcine adipocytes reach a diameter of around 240 µm.    

More evidence of hyperplasia or differentiation of pre-adipocytes into nascent 

adipocytes was indicated when comparing rp to backfat thickness.  As backfat thickness 

increases, rp increases (Table 5), suggesting that as adiposity increases appearance of 

small adipocytes in the minor mode increases (i.e., differentiation of preadipocytes to 

adipocyte, both hyperplasia and differentiation of preadipocytes, or lipid filling of 

previously divided fibroblastic cells).  The notion that these data represent an increase in 

number of small adipocytes in adipose tissue is supported even further when comparing 

rp to rd (Fig. 2).  Figure 2 demonstrates this notion, because these two ratios are negatively 

correlated.  As the adipocyte diameter of the major mode becomes larger (or the 

adipocyte diameter of the minor mode becomes smaller), the probability of finding an 

adipocyte in the distribution of adipocytes containing the minor mode becomes larger (or 

the probability of finding an adipocyte in the distribution of adipocytes containing the 

major mode becomes smaller).  The results that indicate hyperplasia, differentiation of 

pre-adipocytes to nascent adipocytes, or lipid filling of previously divided fibroblastic 

cells is occurring in these pigs at slaughter weight are not consistent with previous 

research that observed no further hyperplastic growth and only hypertrophic growth was 

observed in extramuscular fat of Hampshire × Yorkshire and Minnesota 3 × 1 pigs after 
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83 kg live weight20.  However, both adipocyte hypertrophy and hyperplasia were 

observed in both Meishan (~52 kg) and Landrace pigs (~83 kg) at 5 months of age20.  

Traditionally, including the work done by Nakajima and colleagues21, researchers have 

relied on an observed bimodal/biphasic distribution to be evidence of hyperplasia.  We 

have taken that one step further and applied rigorous statistical analyses to describe the 

bimodal distribution evidence of an increase in the number of small adipocytes gleaned 

from these distributions by quantitative rather than by qualitative methods.  It is possible 

that in a younger pig you would not see such a prominent minor mode, and the 

probability of finding an adipocyte in the major mode or minor mode may be reversed.  It 

is worth taking into consideration that these pigs were adolescent in terms of human 

growth at the time of slaughter and that hyperplasia has been demonstrated in humans to 

occur through adolescence22.  So, observing adipose growth by both hypertrophy and an 

increase in number of small adipocytes at this age of the pig is consistent with data 

previously reported.  Additionally, high fat diets, such as those for the pig, cause 

hyperplasia in rats23.  It also has been demonstrated that in mice hypertrophy and 

hyperplasia occur as a result of fat pad mass increases rather than as a function of age6. 

Finally, variations between individuals occur and that some New Zealand rabbits at one 

year of age have normally distributed adipocytes and some have bimodally distributed 

adipocytes24.  The authors speculated that the bimodal distribution was a result of 

recruitment of new small adipocytes.  These data reported in our study assume that small 

cells (located in the minor distribution) are new cells and also rely on only one time point 

in the life of the animal.  However, differentiating between new cells and old small cells 

is not possible.  Future confirmation of in vivo cellular division by BrdU/PCNA25-26 
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studies should be done to differentiate between the many ways an adipocyte may be 

found in the minor mode.  These ways include both hyperplasia of adipocytes, 

differentiation of pre-adipocytes to nascent adipocytes, or lipid filling of previously 

divided fibroblastic cells and cannot be distinguished by using this indirect method of 

measuring hyperplasia.  To fully understand how adipose growth progresses, a 

longitudinal animal study examining regulation and development of adipose tissue over 

time, and going well into adulthood for the animal, needs to be done to determine if 

hyperplasia occurs in adulthood.   

It was determined that sample mean adipocyte cell size is an inappropriate 

descriptor of adipocyte cell size because of the bimodal distribution of adipocytes found 

in the vast majority of adipose depots assayed.  We recommend that future adipose tissue 

research include the analysis proposed in this study to quantitatively identify bimodality 

of adipocyte cell distributions.   

Finally, convincing evidence of hypertrophy and increased numbers of small 

adipocytes (either by hyperplasia or by differentiation of pre-adipocytes into nascent 

adipocytes) both being a factor in expansion of adipose tissue of pigs at market weight 

was shown through quantitative methods and should be applied to future adipose tissue 

growth and development research.  Increased numbers of small adipocytes in adipose 

tissue that is still occurring in pigs of market weight begs the question whether or not 

hyperplasia of adipose tissue continues on into adult life, particularly in high fat feeding 

programs.  More research will need to be done to determine whether or not hyperplasia of 

adipose tissue is a factor in adult-life, to identify mechanisms controlling hyperplasia of 
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adipose tissue, and to develop the potential implications to better understand the growth 

and development of adipose tissue of food-producing animals and of humans. 
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Table 1. 

Average daily gain, fat-free lean percentage, and backfat thickness of five purebred and one crossbred line of pigs 

 Breed2  Sex  P-Values 

 
Item 

Berkshire Chester 
White 

Duroc Landrace Yorkshire  Barrow Gilt  Breed Sex Breed 
×Sex 

ADG, 
kg 

0.80a 0.83ab 0.87b 0.79a 0.87b  0.85b 0.82a  <0.001 0.011 0.151 

 (± 
0.01) 

(± 0.02) (± 0.01) (± 0.01) (± 0.01)  (± 0.01) (± 0.01)     

FFL, %3 47.94a 50.59bc 52.53cd 51.19b 52.39cd  49.33a 53.34b  <0.001 <0.001 0.016 

 (± 
0.41) 

(± 1.15) (± 0.39) (± 0.44) (± 0.40)  (± 0.24) (± 0.43)     

BF, cm4 2.346ab 2.366a 2.493c 2.467c 2.415ab  2.455b 2.382a  <0.0001 <0.0001 0.0004 

 (±0.01) (±0.04) (±0.01) (±0.01) (±0.01)  (±0.01) (±0.01)     

a, b, c, d Within a row and main effect, means without a common superscript differ (P < 0.05).   
1 Standard error in parenthesis below mean value.  
2 n = 149 pigs; number of pigs within each breed (number of barrows, number of gilts): Berkshire = 65 (40, 25); Chester White 
= 17 (15, 2);  
Duroc = 11 (7, 4); Landrace = 23 (6, 17); Yorkshire = 33 (17, 16). 
3 FFL = fat-free lean. 
 a, b, c, d Within a row and main effect, means without a common superscript differ (P < 0.05).   
4 BF = backfat thickness in cm. 
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Table 2. Minor mode adipocyte diameter from five breeds of pigs as affected by breed, anatomical location, and sex (µm)1, 2 
 Breed  Sex3  P – Value 

 
Depot 

Berkshire Chester White Duroc Landrace Yorkshire  B G  Breed × 
Locatio

n 

Sex 

Back 30.67X 31.95X 29.12X 31.17X 30.06X  32.85 31.17  0.196
0 

0.0002 

 (±0.45) (±0.84) (±1.03) (±0.75) (±0.64)  (±0.2
7) 

(±0.35
) 

   

Belly 33.00Y
 34.81Y

 33.67Y
 34.68Y

 32.66Y
     0.116

6 
 

 (±0.44) (±0.92) (±1.28) (±0.81) (±0.64)       
Jowl 32.93Y

 32.01Y
 30.70XY

 30.50X
 32.29Y

     0.090
0 

 

 (±0.45) (±0.88) (±1.13) (±0.83) (±0.63)       
1 n =149 pigs; number of pigs within each breed (number of barrows, number of gilts): Berkshire = 65 (40, 25); Chester White 
= 17 (15, 2); Duroc = 11 (7, 4); Landrace = 23 (6, 17); Yorkshire = 33 (17, 16). 
2 Standard error in parenthesis below mean value.  
3 B = Barrow, G = Gilt. 
X, Y, Z Within a column, means without a common superscript differ (P < 0.05).  
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1 n = 149 pigs; number of pigs within each breed (number of barrows, number of gilts): Berkshire = 65 (40, 25); Chester White 
= 17 (15, 2); Duroc = 11 (7, 4); Landrace = 23 (6, 17); Yorkshire = 33 (17, 16). 
2 Standard error in parenthesis below mean value.  
3 Adipocyte diameter of the mode of cells within the major distribution.  
a, b, c  Within a row, means for breeds without a common superscript differ (P < 0.05).  
 
 
 
 
 
Table 4. Mean adipocyte cell size from five breeds of pigs (µm)1, 2 

 Breed  P - 
Value 

Depot Berkshire Chester 
White 

Duroc Landrac
e 

Yorkshir
e 

 Breed × 
Locatio

n 
Back 94.26Y 91.05 90.59 93.46 92.46  0.3019 
 (± 0.88) (± 1.69) (± 2.07) (± 1.45) (± 1.22)   
Belly 95.41Y, c 89.02a,b 87.42a 93.26b,c 92.49b,c  0.0007 
 (± 0.88) (± 1.74) (± 2.07) (± 1.48) (± 1.22)   
Jowl 89.15X 90.57 92.08 90.73 90.67  0.6873 
 (± 0.91) (± 1.70) (± 2.07) (± 1.51) (± 1.24)   

1 n =149 pigs; number of pigs within each breed (number of barrows, number of gilts): Berkshire = 65 (40, 25); Chester White 
= 17 (15, 2); Duroc = 11 (7, 4); Landrace = 23 (6, 17); Yorkshire = 33 (17, 16). 
2 Standard error in parenthesis below mean value.  
X, Y, Z Within a column, means without a common superscript differ (P < 0.05). 
a, b, c Within a row, means without a common superscript differ (P < 0.05). 
 

Table 3. Major mode adipocyte diameter from five breeds of pigs as affected by breed and anatomical location within sex (µm)1, 2 

  Breed   Location  P – Values 

   
Berkshire 

Chester 
White 

 
Duroc 

 
Landrace 

 
Yorkshire 

 Back Belly Jowl   
Breed 

 
Location 

×Sex 
Item   Barrow Gilt Barrow Gilt Barrow Gilt  

Major Mode3  117.18c 112.15b 106.14a 112.80b 111.01b  117.03c 112.03b 104.43a 111.83b 111.91b 113.91b

c 
 <0.0001 <0.0001 

  (0.85) (1.50) (1.89) (1.34) (1.12)  (1.28) (1.54) (1.29) (1.55) (1.28) (1.60)    
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Table 5. Correlations of cellularity and cell size related measures of back adipose tissue  

Items Data1 Data2 r   P- Value3 

Cellularity × 106 of backfat to BF4 1.09 ± 0.42 2.48 ± 0.79 -0.5157 <0.0001 
Cellularity × 106 of backfat to mean cell size of backfat (µm) 1.09 ± 0.42 93.21 ± 7.71 -0.6610 <0.0001 
Cellularity × 106 of backfat to major mode cell size of backfat (µm)   1.09 ± 0.42 117.16 ± 13.75 -0.6491 <0.0001 
BF4 to major mode cell size of backfat (µm) 2.48 ± 0.79 117.16 ± 13.75 0.7818 <0.0001 
BF4 to secondary mode cell size (µm) of backfat  2.48 ± 0.79 30.81 ± 3.10 -0.0681 0.4226 
BF4 to probability ratio of modes of backfat5 2.48 ± 0.79 0.19 ± 0.04 0.4266 <0.0001 
BF4 to ratio of mode cell sizes of backfat6 2.48 ± 0.79 0.26 ± 0.04 -0.6021 <0.0001 
BF4 to probability of a cell being found in the minor mode of backfat 2.48 ± 0.79 0.15 ± 0.02 0.4601 <0.0001 
BF4 to probability of a cell being found in the in the major mode of backfat 2.48 ± 0.79 0.78 ± 0.03 -0.2228 0.0079 

1 Mean numerical value from first correlate in each line plus/minus standard deviation, n = 143 pigs. 
2 Mean numerical value from second correlate each line plus/minus standard deviation, n = 143 pigs. 
3P-values for difference from zero. 
4BF = backfat thickness in centimeters. 
5Probability of finding an adipocyte in the minor mode divided by the probability of finding an adipocyte in the major mode. 
6Adipocyte cell diameter of the minor mode divided by the adipocyte cell diameter of the major mode. 
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Table 6. Adipose tissue cells per gram of tissue of five breeds of pig (X 106) 1 

 Breed2  P-Value 

Dep
ot 

Berkshir
e 

Chester 
White 

Duroc Landrace Yorkshir
e 

 Breed × 
Location 

Bac
k 

1.01a, X 1.15a, X 1.55b, X 1.07a, X 1.04a, X  0.0004 

 (± 0.05) (± 0.09) (± 
0.11) 

(± 0.08) (± 0.07)   

Bell
y 

1.35a, Y 1.68b, Y 2.24c, Y 1.63b, Z 1.51a, b, Y  <0.0001 

 (± 0.05) (± .10) (± 
0.11) 

(± 0.08) (± 0.07)   

Jowl 1.24a, b, Y 1.45c, Y 1.46b, c, 

X 
1.31a, b, c, 

Y 
1.14a, X  0.0209 

 (± 0.05) (± 0.09) (± 
0.11) 

(± 0.08) (± 0.07)   

1 Standard error in parenthesis below mean value.  
2 n = 149 pigs; number of pigs within each breed (number of barrows, number of gilts): 
Berkshire = 65 (40, 25); Chester White = 17 (15, 2); Duroc = 11 (7, 4); Landrace = 23 (6, 
17); Yorkshire = 33 (17, 16).  
X, Y, Z Within a column, means without a common superscript differ (P < 0.05). 
 a, b, c Within a row, means without a common superscript differ (P < 0.05). 
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Fig. 1.  Representation of typical distribution of adipocytes in porcine adipose tissue.   
(A) Representation of bin 1 and bin 2 (defined in Materials and Methods) used in 
hypothesis testing for determining unimodality or bimodality of adipocyte distribution. 
(B) Representation of the “minor” and “major” modes with the “dead zone.” (Bin 2 in 
Fig. 1A; 50.1565-65.3792 µm) (C) Illustration of the behavior of the minor and major 
modes as an animal increases in adiposity.  The minor distribution of cells becomes better 
defined (i.e., taller), and the mode of the major distribution of cells moves to the right. 
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(D) Illustration of why mean adipocyte size is an inappropriate metric for describing 
bimodal adipocyte cell distributions.  It is clear that the mean is misleading because the 
presence of the minor mode lowers the value of the mean.  The mode of the major 
distribution and the mode of the minor distribution more accurately represent the most 
abundant diameter of adipocyte in both distributions. 
.

 

Fig. 2. Behavior of the major and minor modes in relation to probability of an adipocyte 
being found in either the major or minor mode. Relationship (probability ratio of modes) 
of the area under the curve of the distribution of adipocytes containing minor mode 
(smaller cell diameter) divided by the area under the curve of the distribution of 
adipocytes containing the major mode (larger cell diameter) to the ratio of the adipocyte 
diameter of the mode of the minor adipocyte distribution divided by the adipocyte 
diameter of the mode of the major adipocyte distribution (ratio of adipocyte diameters of 
the minor to the major mode).

y = -0.3036x + 0.3329
r = - 0.2939
P < 0.0001
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Fig. 3. Histogram-based adipocyte diameter probability distribution function.  Probability 
distribution function was generated from 14,703,815 size bins.  Probability distribution 
function of adipocyte diameter is from all breeds, sexes, and anatomical locations of 
assayed pigs (n = 149 pigs x 3 anatomical locations = 447).  In each cluster of bars, the 
left bar is the lower standard (2-sigma) error, the middle bar is the estimated probability 
distribution function, and the right bar is the upper standard (2-sigma) error.  As in Fig. 
2C, we would expect that as an animal gains more adiposity the probability of the minor 
distribution of cells as a whole would increase, and maximum probability of the major 
distribution of adipocytes would shift to a larger adipocyte diameter.  The probability of a 
chosen bin is the bin width (8.7141 µm) multiplied by the height of that chosen bin 
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